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Abstract

Background: Due to the excellent reliable traceability and superparamagnetic properties, superparamag-
netic iron oxide nanoparticles (SPIOs) are widely used for the applications in the field of biomedicine,
including tissue engineering and regenerative medicine. However, the regulation of SPIOs on the gene

expressions in the stem cells is not clear.

Methods: In this study, by RNA-Seq analysis, we analyzed the gene expression pattern in the neural
stem cells (NSCs) treated with SPIOs in the presence or absence of static magnetic field (SMF).
Results: 1t was found that SPIOs with SMF regulated more gene expression in NSCs, while most of
these genes have been previously reported to play a crucial role in NSCs fate decision.

Conclusions: Our findings reveal the ability of SPIOs and SMF in the regulation of gene expression in
NSCs, which may provide an experimental basis for its applications.
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Introduction

As nanoparticles display remarkable magnetic responsive-
ness, the diameter of superparamagnetic nanoparticles is
generally less than 30 nm. Superparamagnetic iron oxide
nanoparticles (SP1Os) are one kind of superparamagnetic
nanoparticles that are widely reported for the applications
in the field of biomedicine due to their high stability, good
biological compatibility (1), and excellent superparamag-
netism under magnetic fields (MFs) (2, 3). Specifically,
SPIOs are demonstrated to regulate stem cell behaviors,
including cell proliferation, directed differentiation and
migration (4). The abovementioned ability indicates that
SPIOs could be used in the regenerative medicine and
tissue engineering. For example, a study in human mes-
enchymal stem cells showed that SPIOs successfully in-
creased stem cell proliferation via accelerating cell cycle
progression and diminishing intracellular oxidative stress
(5). Another study found that osteogenesis of human
bone-derived mesenchymal stem cells was promoted
by SPIOs (6). Similar findings were reported in another
study where osteogenic differentiation of adipose-derived

mesenchymal stem cells was boosted (7). The current re-
ports clearly highlight the potential of SPIOs in the regu-
lation of stem cell behaviors. As magnetic responsiveness
biomaterial, it is inevitable to consider the cell behaviors
under MFs. In fact, MFs have been proved to regulate cell
proliferation in the last century (8). They can also control
the stem cell differentiation, for instance, to osteoclasts
(9) and osteoblasts and cartilage (10). Importantly, when
co-treated with magnetic nanomaterials and MFs, cell be-
haviors were expectably affected. For example, they can
facilitate drug delivery (11) and guide the growth direction
of neurons (12). Thus, to understand the mechanisms of
the regulation of SPIO in neural stem cells (NSCs) under
the presence of MFs, we explored the gene expression pat-
tern in the NSCs when treated with SPIO and MFs.

Methods
SPIOs synthesis

Classic chemical co-precipitation methods were employed
to synthesize the SPIOs in the study, which was described
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previously (13). In brief, 10 mL aqueous solution of poly-
glucose sorbitol carboxymethyl ether (200 mg) was aerated
with nitrogen for 6 min to remove oxygen. Then, FeCl,
and FeCl, were dissolved in deionized water, and the re-
action mixture was added to the polyglucose sorbitol car-
boxymethyl solution. Subsequently, ammonium hydroxide
(1 g, 28% wiv) was added to the mixed solution and stirred
in a water bath for 30 min. at 80°C. Finally, the nanoparti-
cles were collected using an ultrafiltration centrifuge tube
and washed with ultrapure water for couple of times.

NSCs isolation and culture

Neural stem cells, isolated from the mouse hippocampus,
were maintained in the DMEM-F12 medium (Gibco, Grand
Island, NY) supplemented with B-27 (2%, Gibco), streptomy-
cin (100 ug/mL, Sigma, St. Louis, MO) and penicillin (100 U/
mL, Sigma) under the conditions of 5% CO, at 37°C. Cells
were passed every 3 days. The cells at passages 510 were used
for the subsequent experiments. The NSCs were treated with
300 ug/mL SPIOs with or without static magnetic field (SMF)
(100 £ 10 mT) for 3 days. Animal studies were approved by the
Care and Use of Animals Committee of Southeast University.

RNA extraction for RNA-Seq analysis

The cells were washed twice with phosphate-buffered saline
and harvested with accutase. RNeasy mini kit (Qiagen, Va-
lencia, CA) was used for isolating total RNA from the cells.
Firstly, TruSeq™ RNA sample preparation kit (Illumina)
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was applied to synthesize the paired-end libraries. The
first-strand cDNA was synthesized using reverse transcrip-
tase and random primers, and then second-strand cDNA
was synthesized using DNA Polymerase I and RNase H.
Following an end repair process, these cDNA fragments
were purified and enriched with polymerase chain reac-
tion (PCR) to create the final cDNA library. The purified
libraries were quantified through Qubit® 2.0 Fluorometer
(Life Technologies, Pleasanton, CA) and validated by Ag-
ilent 2100 bioanalyzer (Agilent Technologies, Santa Clara,
CA) to calculate the mole concentration. Finally, clusters
were generated by cBot with the library diluted to 10 pM
and then were sequenced on the Illumina NovaSeq 6000
(Illumina). The library construction and sequencing were
performed at Shanghai Sinomics Corporation.

Results

Global gene expression profile analysis

The differences in transcript expression levels were com-
pared between the negative control group, the SPIOs
incubation group (300 pg/mL) (SPIOs group), the SMF
(100 £ 10 mT) group and the combined treated group of
SMF (100 + 10 mT) SPIOs (300 pg/mL) (SMF + SPIOs
group). The NSCs in all groups were cultured for 3 days
before gene expression profile by microarray assay. SMF
treatment induced the medium number of significant
differences in gene expression (total number is 1136,
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Fig 1. Differentially expressed gene analysis. Volcano plots of different expressed genes of SMF versus control group (A), SPIOs
versus control group (B), the SMF + SPIOs versus control group (C). Red dots represent the differentially expressed genes of
the up-regulated expression, the blue dots represent the differentially expressed genes of the down-regulated expression, and the
gray dots represent the genes that have no obvious differential expression. Heat map to differentially expressed gene of the SMF
versus control group (D), SPIOs versus control group (E), the SMF + SPIOs versus control group (F). (G) Venn diagram of
differentially expressed gene in different groups.
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558 up-regulated genes and 578 down-regulated genes)
(Fig. 1A and D). The significant differences in gene ex-
pression were observed in the NSCs treated with 300 mg/
mL SPIOs, with at least 201 genes (127 up-regulated genes
and 74 down-regulated genes) (Fig. 1B and E). Moreover,
1104 up-regulated genes and 866 down-regulated genes
were detected under co-treatment group (Fig. 1C and 1),
which had the most significant differences gene. In addi-
tion, Venn diagrams were shown to present the connec-
tions between the different genes in each experimental
group (Fig. 1G). The differentially expressed genes in
the SMF group compared with the SPIOs group had 125
identical differentially expressed genes, which accounted
for 57.1 and 96.8% of the total differential genes in each
group. The differentially expressed genes in the SMF
versus control group compared with the SMF + SPIOs
group versus control group had 784 differentially ex-
pressed genes, which accounted for 85 and 50.3% of the
total differential genes in each group. The experimental
group co-incubated with SPIOs versus control compared
with the simultaneous SMF + SPIOs group versus control
group had 159 differentially expressed genes, accounting
for 98.1 and 23.1% of the total differential genes of each
group, respectively.

Differentially expressed genes

The most abundantly expressed genes of NSCs were
explored to characterize the gene expression profiles in
NSCs in these three experimental groups. The expression
levels for the top 200 most abundant genes were ana-
lyzed and compared with the control group (Fig. 2A-
C). It was indicated that the majority of the transcripts
that were highly expressed in SPIOs, SMF and SMF
+ SPIOs group were also abundantly expressed in the
control group. Although the most abundantly expressed
genes, such as Gfap, Glul, Slc25al8, Oat, Sms-ps, spry2,
Car2, and Csrpl, were significantly highly expressed
in the SMF group, Ftll-psi, Sms-ps were significantly
highly expressed in the SPIOs group and Gfap, Ftll-psi,
Sms-ps, and Mrps6 were significantly highly expressed in
the SMF + SPIOs group.

Furthermore, the expression levels of all of the tran-
scripts were compared, and the top 40 significant dif-
ferentially expressed genes were located (Fig/. 3). It was
shown that the differentially expressed genes Pirgsl,
Cldn5, DIx2, Sprria, 3100003L05Rik, Hnrnpa3, etc.
were uniquely expressed in the SMF group (Fig. 3A).
The differentially expressed genes Cldn5, Hnrnpa3,
DIx2, 3100003L0O5Rik, Nprl, etc. were only expressed
in the SPIOs group (Fig. 3B), while the differentially
expressed genes Cldn5, C2cd4b, DIx2, 3100003 L05Rik,
H2acl0, Sulfl, etc. were only expressed in the SMF +
SPIOs group (Fig. 3C). However, Bmp4, Lrrc75b, Dppl0
(Fig. 3D), Zbtb6, Hspala (Fig. 3E), Gsgll, Kcncd, Nog,

Citation: STEMedicine 2022, 3(1): el |7 - http://dx.doi.org/10.37 1 75/stemedicine.v3il.| |7

The effects of superparamagnetic iron oxide nanoparticle

Egr3 Arhgdig (Fig. 3F), etc. were only expressed in the
control group.

Cell cycle analysis

The expression of genes regulating cell cycle and pro-
liferation was further studied. It was found that Gfap,
Gem, Duspl, Mmp2, and S1pr3 were significantly highly
expressed in SMF groups (Fig. 4A), and that Bmp4, Nog,
Prkcq, Brinpl, Txnip, Pdgfra, 1d2, Igfbp5, and Rgcc were
significantly highly expressed in control groups (Fig. 4A).
The highly expressed genes in SPIOs groups included
Ccend3, Nuprl, Duspl, and Mmp2 (Fig. 4B). In the SMF
+ SPIOs group, the highly expressed genes included
Nuprl, Mmp2, Slpr3, Ccnd3, Gem, Mycn, Duspl, Apc,
Atf4, Adamtsl, Phldal, and Sfrpl (Fig. 4C). However,
there were most highly expressed genes in the control
group compared with the SMF + SPIOs group (Fig. 4D),
including 1d3, Bmp4, Igfbp5, Rgce, Mtl, Id4, Ccenb2, Egrl,
1d2, Pdgfra, and Mmp?2.

Transcription factors analysis

TFs are taken as a specific element that can recognize par-
ticular DNA sequences to direct chromatin and transcrip-
tion and form a complex system that guides expression
of the genome. We found 26 significantly differentially
expressed TFs in SMF and control groups (P < 0.05,
fold change > 1). Among these genes, DIx2, Sox7, Cebpd,
Zfpl80, Zfp629, Otxl, Ets2, Tead2, and Zfp740 were sig-
nificantly highly expressed in SMF groups, and Sox8, Id2,
Hes5, Zfp292, Idl, 1d4, Nkx2-2, Sox10, Zfp488, and Myrf
were significantly highly expressed in control groups (Fig.
SA). Sox7, Csdc2, Usf3, Zfpl80, Zfp28, and Erg3 were
significantly highly expressed in SPIOs groups, while none
of those genes have been previously reported in function
with NSCs. In contrast, Hopx, Zbtb6 were significantly
highly expressed in control groups (Fig. 5B). The highly
expressed TF genes in the SMF + SPIOs group included
DIx2, Sox7, Cebpd, Mycn, Usf3, Kif4, Zfp180, Pou3fl,
and Rxra. In the control group, the highly expressed
TFs genes included Id4, Egrl, Hopx, Hes5, Idl, 1d2, 1d3,
Sox10, Zfp292, Hmgb3, Zfp488, KIf10, etc.

Signaling pathway analysis

The fate of stem cells is regulated by a variety of signal-
ing pathways, including Wnt, Hippo, MAPK pathways,
etc. The balance of NSCs is regulated by WNT, Notch,
FGF, and BMP signaling cascades (14, 15). In this study,
we explored which signaling pathway is affected by SPIO
and SMF treatment. As shown in Fig. 6A, we found 26
signaling pathways of differentially expressed gene en-
richment. Among these, there were more up-regulated
genes than down-regulated genes, especially FzdS, Gsn,
Duspl, and Cacng5 had higher expression. In Fig. 6B,
there were 21 signaling pathways of differential expressed
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Fig 2. Highly expressed genes in different groups. The top 200 highly expressed genes of the SMF group (red bar) (A), SPIOs
group (green bar) (B), the SMF+SPIOs group ranked in descending order (yellow bar) (C). The number in blue on the right side
of each panel represents the same gene ranking in the control group.

gene enrichment, and the nitrogen metabolism had the
maximum enrichment factor. Among these, the number
of up-regulated genes was more than the down-regu-
lated genes, but the differential expression of genes was
low. There were 52 signaling pathways of differentially
expressed gene enrichment in the SMF + SPIOs group
compared with the control group, and there were more
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up-regulated genes than down-regulated genes in six main
signaling pathways (Fig. 6C). Among these, Fzd8, Gsn,
and Duspl showed higher expression.

Discussion

In this study, SPIOs, SMF, or SMF+SPIOs could
induce differentially expressed genes in NSCs. In
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Fig 3. The differentially expressed genes of NSCs in different experimental groups. The top 40 highly differentially expressed genes of
NSCs cultured in the SMF group (A), SPIOs group (B), and the SMF + SPIOs group ranked in descending order (C). The number on
the right of each panel represents the fold difference in expression for NSCs in different culture condition groups versus control group.
(D-F) The top 40 highly differentially expressed genes of NSCs in the control group ranked in descending order. The number on the
right of each panel represents the fold difference in expression for NSCs in the control group versus different culture condition groups.

transcriptome analyses, the top 200 highly expressed
genes, differentially expressed genes, cell cycle-related
genes, TF genes, and several signaling pathways were
included.

Most of those genes have been reported to be involved
in the stem cells fate decisions, specifically in NSCs. No-
tably, electrical stimulation might promote the expression
of Mmp2 to accelerate neurite regeneration in cultured
ganglion neurons (16). The effects of BMP4 have been
observed in the proliferation and differentiation of NSCs.
Recently, BM P4 was reported to inhibit the proliferation
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of monkey-derived NSCs via the Smad signaling pathway
(17). Meanwhile, BMP4/LIF has the potential to promote
the differentiation of monkey-derived NSCs by regulat-
ing Notch signaling (17). Brinp family member including
Brinpl was previously reported to suppress the process
of cell cycle and induce the differentiation of embryonic
stem cell-derived NSCs (18). Pdgfra could deregulate
self-renewal, differentiation, and survival of NSCs in em-
bryonic brains (19). Myc family was proved to be a critical
transcription factor in the self-renewal division of many
types of stem cells (20). For example, N-Myc is necessary
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Fig 4. Cell cycle-related differentially expressed genes of NSCs in the SMF group (A), SPIOs group (B), the SMF + SPIOs
group (C), and control group (D).

for normal neurogenesis and regulate the proliferation accumulation of misfolded/unfolded proteins and induces
and differentiation of NPCs (21). Atf4 gene encoded tran- the unfolded protein response (UPR), which have adverse
scription factor ATF4, which connected with endoplas- effects on self-renewal and differentiation of NSCs (22).
mic reticulum (ER)-stress. ER stress can be caused by the While Cenb2 (cyclin B2) works mainly through regulating
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Fig 5. Transcription factors of NSCs in different culture condition groups. (A) The expression of 26 genes involved in the tran-
scription factor of NSCs cultured in SMF group and control group. (B) The expression of eight genes involved in the transcrip-
tion factor of NSCs cultured in the SPIOs group and control group. (C) The expression of 52 genes involved in the transcription
factor of NSCs cultured in the SMF + SPIOs group and control group.

the G,/M and plays a crucial role in cell proliferation (23).
Otx1 is generally connected with the development of the
central nervous system and acts as a homeobox-contain-
ing transcription factor (24). In addition, the expression
of OtxI has been demonstrated to determine the number
of neurons (25). Recently, Otx/ is also identified as a key
element to regulate the proliferation and differentiation of
cortical progenitors (26). The Kriippel-like transcription
factor (KLF) families are previously reported to regulate
a diverse array of cellular processes, including develop-
ment, differentiation, proliferation, and apoptosis (27).
Especially, KIf4 has been demonstrated as a key factor
in regulating NSC proliferation and differentiation (28).
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Pou3fl is also taken as an important TF promoting neural
fate (29). However, in contrast with the SMF group, the
control group also included common TFs in determining
the fate of NSCs. Sox/0 belongs to a member of Sox E
family, which has a close relationship with the differen-
tiation of NSCs (30). The previous report suggested that
the regulatory mechanism of oligodendrocyte specifica-
tion and differentiation from NSCs or neural progenitor
cells (NPCs) is through the transcription factors Nkx2.2
and Sox/0 (31). In addition, Nkx2.2 has shown a simi-
lar function during ESC-derived NSC differentiation into
oligodendrocytes (32). Zfp488 plays an important role
in the development of oligodendrocyte lineage cells and
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Fig 6 Signaling pathway gene expressions of NSCs in different culture condition groups. (A) The differential KEGG pathways
from NSCs cultured in the SMF group versus NSCs of control. (B) The differential KEGG pathways from NSCs cultured in SPIOs
group versus NSCs of control; (C) The differential KEGG pathways from NSCs cultured in the SMF and co-incubated with SPIOs
group versus NSCs of control. The red bars represent the gene expression levels of NSCs cultured in the SMF group. The green bars
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NSCs cultured in the SMF + SPIOs group. The blue bars represent the gene expression levels of NSCs cultured in the control group.
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differentiation of oligodendrocyte progenitor cells (33,
34), and the expression of Zfp488 selectively directed the
fate of NSCs toward generating functional oligodendro-
cytes (35). In a previous study, it was found that Id1, Id2,
and Id3 elevated self-renewing and proliferation abilities
of NSCs while inhibiting neuronal differentiation (36).
Meanwhile, /d2 and Id4 play a critical role in regulating
the process of cell cycle by inhibiting the effects of related
proteins (37).

We also explored the actin cytoskeleton signaling
pathway. According to previous reports, the actin cyto-
skeleton-dependent forces are necessary for various cell
behaviors, including cell migration, interaction with the
cell microenvironment, cell shapes and mechanical prop-
erties of the cell surface (38). However, there are few re-
ports focusing on the direct regulation of NSC behaviors
by actin cytoskeleton-dependent forces, which deserves an
in-depth investigation in the future.
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