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Abstract 

Magnesium (Mg2+) is an essential divalent cation in human body. Its balance is tightly controlled via a 
balanced interplay among intestinal absorption, storage, and renal excretion, involving multiple trans-
porters across cell membrane that regulate Mg2+ influx and efflux. Mg2+ is involved in a variety of 
physiological and pathological processes such as enzymatic reactions, energy metabolism, cell prolif-
eration, apoptosis, oxidative stress, and inflammation. In particular, Mg2+ contributes to the molecu-
lar hallmarks of aging. Emerging evidence demonstrates that altered Mg2+ status has been associated 
with many aging-related diseases, including cancer, cardiovascular disease, neurodegenerative disease, 
musculoskeletal function, metabolic syndrome, and COVID-19. In this review, we focus on Mg2+ and 
its association with molecular hallmarks of aging. We also summarize recent findings supporting an 
important role of Mg2+ in aging-related disease including the COVID-19 pandemic.
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Magnesium (Mg2+) is the eighth most common 
element in the earth’s crust (1). It is involved 
in various cellular activities, including signal 

transduction, ion transport, nucleic acid, protein synthe-
sis, genomic stability, energy supply, and metabolic ho-
meostasis (2). Due to its physiological significance, Mg2+ 
balance in human body and intracellular Mg2+ homeo-
stasis needs to be tightly controlled via a dynamic inter-
play between intestinal absorption and renal excretion, 
involving multiple transporters across cell membrane 
that regulate Mg2+ influx and efflux (1). Mg2+ transporters 
include claudins, transient receptor potential melastatin 
7 (TRPM7), TRPM6, solute carrier family 41 (SLC41), 
ancient conserved domain protein/cyclin M (CNNM), 
magnesium transporter 1 (MagT1), and mitochondrial 
RNA splicing 2 (Mrs2) (3, 4). Both hypomagnesemia 
and hypermagnesemia lead to human diseases. Chronic 
Mg2+ deficiency contributes to an increased risk of a va-
riety of clinical disorders, such as cardiovascular diseases 
(CVDs), including hypertension and cardiac arrhythmias, 

stroke, type 2 diabetes, metabolic syndrome, depression, 
and neuropsychiatric disorders (5).

Aging is a progressive loss of  physiological integrity 
and characterized by an increasing susceptibility to 
the development of  multiple chronic diseases (6). The 
aging process involves various changes at the cellular, 
organ, and body levels. In general, aging encompasses 
multiple modes induced by DNA damage, oxidative 
stress, drug damage, mitochondrial dysfunction, para-
crine secretion, or telomere shortening (7). Aging also 
leads to an increased incidence of  numerous human 
diseases, such as CVDs, neurodegenerative diseases, 
immune disorders, respiratory diseases, cancers, and 
infections (8). 

In this present review, we provide an illustrative 
overview of Mg2+ balance in human body and the under-
lying mechanisms involving various Mg2+ transporters. 
We also discuss the involvement of Mg2+ in molecular 
hallmarks of aging, with a focus on the important role of 
Mg2+ in aging-related human diseases.
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Mg2+ and human health

Mg2+ basics
Mg2+ is highly soluble and, therefore, readily available to 
living organisms (9). As the fourth most abundant cat-
ion in the body behind sodium, potassium, and calcium, 
Mg2+ is present in three forms, free, ionized (55–70%), pro-
tein-bound (20–30%), and forming complexes with anions 
such as phosphate, bicarbonate, and citrate (5–15%). In 
healthy individuals, serum concentration of total Mg2+ is 
maintained tightly within a range between 0.65 and 1.05 
mmol/L (1). Bone functions as a large buffer pool con-
tribute to the maintenance of serum Mg2+ concentrations 
(10). Total Mg2+ concentration in mammalian cells is in 
the 17–20 mM range, mostly located in mitochondria, 
nucleus, and endoplasmic reticulum (11). Within these 
organelles, Mg2+ is bound to phospholipid, proteins, nu-
cleic acids, chromatin, and nucleotides. Cytoplasmic Mg2+ 
is the last and well detectable pool of intracellular Mg2+, 
with the majority complexed with Adenosine Triphos-
phate (ATP) phosphonucleotides, and phosphometabo-
lites (11, 12). With the application of novel Mg2+-selective 
fluorescent probes and the development of new imaging 
techniques, cellular Mg2+ homeostasis awaits more accu-
rate and dynamic evaluation (13). Mg2+ is an essential el-
ement for normal life activities, and Mg2+ homeostasis is 
precisely regulated to maintain functional stability of cells.

Mg2+ transporters and Mg2+ homeostasis
Mg2+ is absorbed mainly in the small intestine (mainly in 
the jejunum and the ileum), stored in bone mineral, and 
excreted through urine and feces (14). In the small intes-
tine, paracellular absorption is driven by higher luminal 
Mg2+ concentrations (1.0–5.0 mmol/L) and accounts for 
80–90% of Mg2+ uptake (15). The kidneys regulate serum 
Mg2+ concentrations through excretion and reabsorption. 
Mg2+ excretion follows a circadian rhythm and only 3–5% 
of serum Mg2+ is excreted, and the thick ascending limb 
of  the loop of Henle reabsorbs 60–70% of the filtered 
Mg2+, with about 10% reabsorbed in the distal tubule 
(3, 16). Under physiological conditions, the tightly regu-
lated balance of Mg2+ intestinal uptake, intracellular stor-
age, and renal excretion is achieved through a specialized 
transport system consisting of Mg2+ transporters across 
biological membranes (Fig. 1). 

Biological function of Mg2+

Mg2+, as a cofactor, has been involved in more than 600 
enzymatic reactions and exerts critical effects in a vari-
ety of cellular biological activities (11, 17). Mg2+ is indis-
pensable for major cellular processes, including energy 
metabolism, apoptosis, and proliferation. Mg2+ acting as 
an allosteric modulator or as a cofactor in the form of 
Mg-ATP modulates the activity of enzymes implicated 

in glycolysis, the Krebs cycle, and the respiratory chain, 
core processes of energy metabolism (18). Mechanisms 
whereby Mg2+ regulates cell proliferation involve the cell 
cycle inhibitor p27 and p53, and other negative modula-
tors of cell proliferation such as Jumonji and numblike 
(18, 19). Evidence for the role of Mg2+ in cell apoptosis 
remains inconclusive. In many experimental models, Mg2+ 
deprivation induced cell death by apoptosis, and dietary 
Mg2+ restriction accelerated apoptosis (18, 20, 21). 

X-ray crystal structure analysis reveals that Mg2+ spe-
cifically binds to the major and minor grooves of DNA 
(22, 23). Mg2+ stabilizes the DNA conformation by elec-
trostatic force or hydrogen bonds and contributes to the 
secondary and tertiary structure of DNA (24, 25). DNA 
aggregation study showed that DNA fragments strongly 
aggregated on Mg2+-treated glass and in Mg2+ solution 
in a concentration-dependent manner (26). Thus, the 
maintenance of intracellular Mg2+ at a physiological level 
is important for DNA stability. Additionally, abnormal 
Mg2+ concentrations can also lead to oxidative stress and 
damage to the double-stranded structure, thus weakening 
the DNA stability (27, 28). Moreover, Mg2+ is required for 
a variety of enzymes involved in DNA repair pathways, 
such as nucleotide excision repair (NER), base excision 
repair (BER), and mismatch repair (MMR), indicating 
the important role of Mg2+ in maintaining genome sta-
bility (29–31).

Both in vitro and in vivo experiments have demon-
strated that a decreased level of Mg2+ affects the behavior 
of leukocytes and vascular endothelial cells and activates 
the production of inflammatory factors in acute inflam-
mation (32). The underlying mechanisms involve the up-
regulation of stress proteins and Nuclear Factor -kappa B 
(NF-kB) pathways, and the impairment of Ca2+ dynamics 
(33). Increased reactive oxygen species (ROS) and altered 
Ca2+ dynamics induced by low Mg2+ further lead to im-
paired mitochondrial function (34). In chronic diseases, 
Mg2+ inhibits oxygen free radical production and mast 
cell degranulation, protects epithelial cells, and alleviates 
the inflammatory and oxidative damage to cells and blood 
vessels (35). Moreover, reduced Mg2+ has been observed in 
a variety of diseases, such as CVD, asthma, preeclampsia, 
osteoporosis, inflammatory bowel disease, mental health 
disorders, and neurodegenerative disease (36–38).

Mg2+ and aging
Aging is a progressive reduction of the body’s physiolog-
ical and psychological adaptability to the environment, 
leading to increased vulnerability to death. Studies have 
linked aging to molecular cross-linking, free radicals-in-
duced damage, changes in immune function, telomere 
shortening, and the presence of senescence genes in DNA 
(7, 39). However, there is not a single theory that can 
completely explain the aging process, indicating that it is 
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a complicated process regulated by multiple factors at the 
genetic and cellular levels, and by the environment and so-
ciety. Previous studies have demonstrated several cellular 

and molecular hallmarks of aging, including telomere 
attrition, mitochondrial dysfunction, genome instability, 
epigenetic alterations, a loss of proteostasis, dysregulated 

Fig. 1. Mechanism of Mg2+ balance in the body. Mg2+ is absorbed mainly in the intestine and excreted through the kidney. Clau-
din-16, Claudin-19, TRPM6/7, Mrs2, SLC41A1/3, and CNNM2/4 are transporters of Mg2+. Receptor tyrosine kinase (RTK) 
and its ligands such as epidermal growth factor (EGF) influence Mg2+ homeostasis by regulating Mg2+ transporters.

[AQ1]
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nutrient sensing, cellular senescence, stem cell exhaustion, 
and altered intracellular communication (Fig. 2) (40). In 
this review, we focus on several hallmarks of aging, which 
have been closely associated with Mg2+.

Mg2+ and telomere attrition
Telomere consists of a 6-bp repeat sequence, TTAGGG. It 
is located at the ends of chromosomes, which shortens grad-
ually with each cell division and ultimately limits cellular 
proliferative capacity (41). Telomeric chromatin structure 
and integrity are influenced by Mg2+. Telomere (>50%) is 
localized in the nuclear laminae, and their trailing lami-
nin-binding proteins are dependent on the presence of 

Mg2+ (42). In addition to maintaining the telomere struc-
ture, Mg2+ also contributes to the regulation of telomerase; 
the enzyme catalyzes the addition of guanine-rich repetitive 
sequences to maintain telomeres (43). Telomerase reverse 
transcriptase (TERT) is the catalytic component of telo-
merase (44). TERT is known to exerts its biological effects 
through an interaction with the mammalian target of rapa-
mycin (mTOR) pathway, which is sensitive to changes of 
Mg2+ status (45). Liu et al. found that Mg2+ can activate 
the mTOR signaling, which consequently protects against 
the age-related decline in muscle regenerative potential 
and muscle mass (46). Additionally, circadian fluctua-
tion of mTOR is regulated through Mg2+ oscillations in a 

Fig. 2. The role of Mg2+ in cell physiology, aging, and aging-related disease. Mg2+ contributes to the regulation of intracellular 
environment, signaling pathways, cation concentration, and mitochondrial function. Mg2+ is critically linked to molecular hall-
marks of aging and is involved in the development of aging-related disease.

http://dx.doi.org/10.37175/stemedicine.v3.i2.119


Magnesium in aging and aging-related disease

Citation: STEMedicine 2022, 3(2): e119 - http://dx.doi.org/10.37175/stemedicine.v3.i2.119 5

MgATP-sensitive manner (45). Altered circadian rhythms 
affect the expression of TERT mRNA and accelerate the 
aging process, and fluctuations in Mg2+ are critically impli-
cated in the modulation of cellular clock and play a role in 
aging-related diseases (47).

Mg2+ and mitochondrial dysfunction
Intracellular Mg2+ deficiency has been shown to affect 
coupled respiration, increase ROS production, and inhibit 
the antioxidant defense systems, including superoxide dis-
mutase (SOD), catalase, and glutathione, leading to the 
disruption of mitochondrial function (48). A reduction in 
intracellular Mg2+ also disturbs mitochondrial Mg2+ ho-
meostasis through modulating mitochondrial RNA splic-
ing 2 (Mrs2), a Mg2+ transporter specifically involved in 
mitochondrial Mg2+ influx and promoting mitochondrial 
Mg2+ efflux via the 41st family of solute carrier member 
3 (SLC41A3) (49). The regulation of mitochondrial Mg2+ 

by Mrs2 has significantly influenced cellular energy status 
and cellular vulnerability. Mrs2 knockdown induces loss 
of electron transport chain complex I, decreases cellular 
and nuclear ATP levels, depolarizes ΔΨm, and renders cells 
sensitive to oxidative stress inducers and apoptotic stimuli 
(48). In line with this, the overexpression of Mrs2 enhances 
cellular resistance to apoptosis-inducing drugs (50). 

SLC41A3 is a novel transporter important for mi-
tochondrial Mg2+ efflux, and its mRNA expression was 
increased under Mg2+-deficient conditions (51). Intrigu-
ingly, intracellular ATP levels were reduced in cells with 
SLC41A3 overexpression, indicating that the transporter 
contributes to mitochondrial ATP production (52). Stud-
ies based on obesity models show that during ischemia 
and hypoxia, the increase of extracellular Mg2+ was asso-
ciated with decreased ATP levels and TRPM7 inhibition, 
leading to exacerbated cell damage (53, 54). Moreover, 
reduced intake of Mg2+ and consequent low serum Mg2+ 
level induce oxidative stress injury through decreasing 
antioxidant enzyme activity, activating the inflammatory 
pathways, lipid peroxidation, and endothelial dysfunction 
(55). Dietary Mg2+ supplementation in a mouse model of 
premature aging has been shown to enhance the mito-
chondrial membrane potential and consequently increase 
H+-coupled mitochondrial NADPH and ATP produc-
tions, leading to an extended life expectancy (56).

Mg2+ in genomic instability and epigenetic alterations
As early as 1976, it was shown that Mg2+ in DNA poly-
merase is essential for the fidelity of DNA replication 
(57). Acting as an essential cofactor for the DNA damage 
repair process, Mg2+ contributes to the stabilization of 
the chromatin structure during the cell cycle (58). How-
ever, in cells undergoing apoptosis, intracellular levels of 
free Mg2+ are increased, constituting an early event in the 
process of apoptosis (59). At the protein level, Ca2+- and 

Mg2+-dependent endonucleases have been implicated in 
DNA breaks during apoptosis (60). Furthermore, Mg2+ 
has been linked to epigenetics, and DNA methylation is 
associated with chromatin compaction and gene silencing.

In the offspring of Mg2+-deficient dams, 11β-hydrox-
ysteroid dehydrogenase-2 (Hsd11b2) CpG promoters 
displayed substantial hypermethylation, contributing 
to downstream down-regulated gene expression (61). In 
pregnant rats, Mg2+ deficiency induced by a low Mg2+ diet 
is able to affect the methylation of specific cytosines in 
the hepatic glucocorticoid genes and consequently cause 
metabolic complications in the neonatal offspring (62). In 
addition, even a short-term deprivation of dietary Mg2+ 
has been shown to greatly upregulate neutral-sphingomy-
elinase (N-SMAse) and p53 in cardiomyocytes, which is 
associated with genomic changes that are important in the 
development of aging (63).

Mg2+ and metabolic disturbances
Many studies have demonstrated metabolic characteristics 
of aged animals, such as glucose intolerance, insulin resis-
tance, decreased fatty acid oxidation, mitochondrial bio-
synthesis, and impaired oxidative phosphorylation (64). 
Mg2+ exerts its significant impact on the metabolic state 
through functioning as a cofactor of critical enzymes in 
mitochondria, where Mg2+ binds to ATP and forms Mg-
ATP complex to regulate the glycolytic enzymes (65). Mg2+ 
contributes to the activation of mitochondrial dehydroge-
nases that are important in energy metabolism, including 
pyruvate dehydrogenase complex (PDH) (66), isocitrate 
dehydrogenase (IDH), and 2-oxoglutarate dehydrogenase 
complex (OGDH), rate-limiting enzymes of the Krebs 
cycle (67, 68). Mg2+ also functions as a second messenger 
in the regulation of insulin secretion and release, influ-
encing insulin downstream signaling pathways (69–71). 
Calorie restriction (CR) is known to improve lifespan and 
age-associated deteriorations by changing metabolic state 
(72). Studies have found that Mg2+ mediates the beneficial 
effects of CR via R-loops suppressors Rnh1/201 and Pif1, 
and Mg2+ supplementation protects against the accumu-
lation of R-loops (RNA–DNA hybrids), which contrib-
utes to genomic instability and lifespan-shortening (73). 
It has been shown that CR increases intracellular Mg2+ 
by upregulating Mg2+ transporter TRPM7, while disrup-
tion of the transporter reduces environmental Mg2+ levels 
and compromises CR-induced repression of the lifes-
pan-shortening formation of RNA-DNA hybrids (73).

Mg2+, protein stability, and intracellular communication
Low levels of Mg2+ have been observed in the brain tis-
sue of patients with neurological disorders, such as mi-
graine, epilepsy, and Parkinson’s and Alzheimer’s diseases 
(AD). Underlying mechanisms of these diseases might 
include an abnormal aggregation of extracellular amyloid 
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β-protein (Aβ), tau phosphorylation, and neuroinflamma-
tion characterized by increased TNF-α and IL-1β expres-
sions (74). It was observed that at the cellular level and 
in animal models, Mg2+ was able to downregulate TNF-α 
and IL-1β and reduce the accumulation of amyloid β pre-
cursor protein in the brain (75, 76). In addition, Mg2+ was 
documented to promote Aβ clearance, through participat-
ing in the proteasomal degradation pathway and decreas-
ing the permeability of blood–brain barrier (77). 

Mg2+ and its transporters are crucial modulators of 
the communication between intracellular signaling path-
ways. The N-methyl-D-aspartate (NMDA) receptor is 
involved in excitatory neurotransmission, neuroplas-
ticity, neuroexcitotoxicity, and memory and circadian 
clock rhythm, important process associated with aging 
(78). Mg2+ is able to inhibit NMDA receptors, and a de-
crease in extracellular Mg2+ depolarizes the membrane 
potential, leading to hyperexcitability (79). The ability of 
TRPM7 to act as a kinase also suggests that it is able to 
influence intracellular signaling. Several TRPM7 kinase 
substrates have been identified, including annexin-1, 
myosin IIA heavy chain, and calpain, supporting a role 
for TRPM7 in cell function, such as contraction, dila-
tion, growth, migration, apoptosis, cell adhesion, and 
anti-inflammatory responses (80–83). In lymphocytes, 
Mg2+ influx through TRPM7 contributes to the func-
tioning of  the phosphoinositide 3-kinase (PI3K)/Akt/
mTOR signaling pathway, which is critical to prevent 
axonal overgrowth and induce cellular response to mem-
brane stretch and fluid shear force (2, 84). In addition, 
the overexpression of  SLC41A1, a Na+/Mg2+ exchanger 
responsible for Mg2+ efflux, was observed to remarkably 
weaken the phosphorylation of  Akt/PKB on Thr308 and 
Ser473, and ERK1/2 on Thr202/Tyr204 (85). 

Mg2+ and aging-related diseases
Aging is one of the primary risk factors associated with 
the development of multiple human diseases, includ-
ing cancer, CVD, neurodegenerative disease, osteoporo-
sis, musculoskeletal disorders, and COVID-19 (86). The 
prevalence of these diseases is remarkably increased in 
the elderly, significantly affecting the life expectancy. For 
examples, approximately 80 million people in the United 
States have at least one form of CVD, with almost one-
half  aged ≥60 years (87). As of today, the majority of new 
cancers occur in susceptible populations aged 55 years or 
older, and the incidence is still rapidly increasing as com-
pared to younger adults (88). An epidemiological study in 
France shows that deaths specifically related to cancer pa-
tients aged over 65 account for 75.3% from all cancers (89). 
Similar epidemiological data are also observed for other 
aging-related disease. In this review, we will throw light on 
the critical role of Mg2+ in these common human diseases 
based on recent experimental and epidemiological data.

Mg2+ and cancer
It has been shown that elevated intracellular Mg2+ concen-
trations favor tumor proliferation, due to its involvement 
in the regulation of tumor-associated telomerase and 
protein phosphatase 1D, a Mg2+-dependent enzyme (90). 
Mg2+ deficiency impairs cell migration and growth by 
inducing cell cycle arrest. Upon Mg2+ restriction, cancer 
cells undergo cell cycle arrest in the G0/G1 through the 
up-regulation of p27, p21, and p16 (91, 92). Additionally, 
Mg2+ selectively enhanced the stability G-quadruplex of 
oncogene promoters and consequently impacts transcrip-
tion of target genes, which provides a new insight on the 
observation that Mg2+ deficiency promotes the occurrence 
of cancers (93).

In addition to Mg2+ itself, Mg2+ transporters are also 
importantly implicated in the development of cancer. 
Many studies have already shown that the Mg2+ trans-
porter TRPM7 exerts important effects on cellular pro-
liferation, survival, cell cycle progression, migration, and 
invasion in various cell lines of cancer. An aberrant ex-
pression of TRPM7 has been observed in different types 
of cancer, especially pancreatic adenocarcinoma. The 
TRPM7 expression in the tissue of human pancreatic ad-
enocarcinoma was positively correlated with the primary 
tumor size, stage, and progression (94). In line with this, 
the down-regulation of TRPM7 in human pancreatic can-
cer cells inhibits cell proliferation, effect that could be di-
minished by Mg2+ supplementation (95). In breast cancer 
tissues, the CNNM3 expression is increased and promotes 
Mg2+ entry into cells through binding to the phosphatase 
of regenerating liver 2 (PRL-2), consequently contribut-
ing to oncogenesis (96).

Mg2+ and cardiovascular disease
Mild to moderate Mg2+ deficiency associates with an in-
creased risk of atherosclerosis, ischemic heart disease, and 
congestive heart failure (HF), while severe Mg2+ deficiency 
can cause ventricular arrhythmias that might lead to even 
sudden cardiac death (97). Mg2+ is important in regulating 
membrane potential and contractility of cardiomyocytes 
and autoregulatory cells (98). Severe Mg2+ loss may in-
duce a prolongation of QT interval and the widening of 
QRS waves, resulting in ventricular arrhythmias (99). In 
the vasculature, Mg2+ is known to exert vasoprotective ef-
fects through regulating vascular tone and cytosolic Ca2+ 
(100). Epidemiological and experimental data show that 
Mg2+ has an inverse association with blood pressure, and 
the Mg2+ supplement may decrease peripheral vascular 
resistance and blood pressure (101). A meta-analysis of 
34 randomized clinical trials involving 2028 participants 
shows that daily intake of 300 mg Mg2+ for 1 month is suf-
ficient to elevate serum Mg2+ and reduce blood pressure 
(102). It is worth noting that TRPM7, acting as a vascular 
Mg2+ regulator, is critically implicated in hypertension. In 
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a mouse model of TRPM7 deficiency, angiotensin II (Ang 
II)-induced blood pressure elevation was exaggerated, and 
the deteriorate effects on cardiac remodeling and left ven-
tricular dysfunction were also amplified (103).

Mg2+ was found to influence the development of athero-
sclerosis by regulating the production of prostacyclin and 
NO (104–106). Low Mg2+ status might promote the expres-
sion of proinflammatory and prothrombotic factors, such as 
interleukin-1β (IL-1β), IL-6, and vascular cell adhesion mol-
ecule 1 (VCAM-1), important molecules for the progress of 
atherosclerosis (107). Vascular calcification is one of the main 
features of atherosclerosis (108). Mg2+ regulated by TRPM7 
increases the expression of inhibitors of calcification such as 
matrix Gla protein, osteopontin, and bone morphogenetic 
protein (BMP7) and reduces the formation of osteogenic 
VSMCs and vascular calcification (109). Moreover, clinical 
studies have confirmed that low serum Mg2+ levels are found 
in patients with coronary artery disease (CAD), an athero-
sclerotic disease that typically affects the heart (110).

Mg2+ and neurodegenerative disease
Mg2+ abundance in cerebrospinal fluid is higher than that 
in blood and is positively correlated with cognitive func-
tion (2, 111). In an in vitro blood–brain barrier model, 
TRPM7 and MagT1 are functionally active and involved 
in the transport of Mg2+ (77). Neuronal growth depends 
on changes of the cytoskeleton in the growth cone (112). 
High TRPM7 expression was observed in the tips of the 
growth cone, which mediates Mg2+ influx to fulfil the 
energy requirements of the neuronal network (113). In 
addition, Mg2+ promotes the differentiation of neural 
stem cells into neurons, and TRPM7 was able to influ-
ence astrocyte proliferation and migration by regulating 
extracellular regulated protein kinase (ERK) and c-Jun 
N-terminal kinase (JNK) activities (114). 

Mg2+ deficiency causes emotional memory impairment 
and worsens the symptoms presented in AD (115). Mg2+ 
protects neuronal function in AD by reducing the TNF-α 
expression in glial cells with mechanisms involving PI3K/
Akt and nuclear factor-kappa B (NF-κB) (76). In an an-
imal model of Parkinson’s disease (PD), the expression 
level of SLC41A1 was reduced contributing to apomor-
phine (APO)-induced rotational behavior, while Mg2+ 
supplement significantly improved the behavior (116). Ad-
ditionally, function loss of Mrs2 transporter important 
for mitochondrial Mg2+ homeostasis was observed in rats 
with demyelinating mutations. (117). It is believed that the 
disruption of  mitochondrial Mg2+ dynamic dysregulates 
ATP production, leading to abnormal cell metabolism, 
thus triggering demyelination and neurological dysfunc-
tions (49). Furthermore, neurological diseases such as 
migraine, seizures, anxiety, depression, and stroke have 
also been associated with a low Mg2+ abundance in serum 
and cerebrospinal fluid (49, 118, 119). However, further 

well-designed Randomized Controlled Trial (RCT) stud-
ies are still needed to confirm whether Mg2+ supplemen-
tation can improve the prognosis of  these diseases.

Mg2+ and musculoskeletal function
Mg2+ is important for skeletal muscle energy metabolism 
as a cofactor for enzymes related to ATP synthesis, and 
Mg2+ deficiency is associated with fibromyalgia, a condi-
tion characterized by chronic widespread musculoskeletal 
pain (120). In healthy older women, daily Mg2+ supple-
mentation over 12 weeks significantly improved physical 
performance assessed by Short-Physical Performance 
Battery (SPPB) score and a 4-m walking test, suggesting 
that Mg2+ may serve as a complementary treatment for 
aging-related physical deconditioning (121). In addition, 
Mg2+ enhances the activity of vitamin D and is involved 
in osteoblast proliferation and bone mineralization, and 
Mg2+ deficiency leads to reduced parathyroid hormone 
(PTH) synthesis and secretion, causing low Ca2+ (122). 
Therefore, Mg2+ supplement might be promising in the 
prevention of age-related osteoporosis.

Mg2+ and abnormal metabolism
Mg2+ has been found to modulate the activation of 
3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) 
reductase, lipoprotein lipase, and lecithin-cholesterol acyl-
transferase, enzymes critically implicated in lipid metabo-
lism (123). Mg2+ is also required to regulate genes that are 
involved in adipogenesis, lipolysis, and inflammation, such 
as PPAR-γ (124). Animal studies have shown that Mg2+ 
decreases lipid accumulation in hepatocytes by regulating 
enzymatic activities and transcriptional genes related to 
lipid metabolism (125). In type 2 diabetic patients, reduced 
serum Mg2+ levels were observed, and Mg2+ is believed to 
mediate the development of diabetes through insulin re-
sistance (126). The effects of Mg2+ on glucose, lipids, and 
blood pressure suggest a role of Mg2+ in metabolic syn-
drome, and in line with this, Mg2+ supplementation was 
reported to be effective in treating metabolic syndrome in 
patients with comorbid hypomagnesemia (127). 

Mg2+ and COVID-19
COVID-19 is one type of zoonotic epidemic exploded in 
late December in 2019, which shares a high degree of ho-
mology with Middle East respiratory syndrome (MERS) 
and severe acute respiratory syndrome (SARS) (128). 
COVID-19 is more prevalent in the elderly, and elderly 
patients are more likely to develop severe or critical pneu-
monia, with a high mortality rate (129, 130). Intriguingly, 
more and more clinical evidence showed that some aspects 
of COVID-19 pathogenesis are similar with the symptoms 
presented in Mg2+ deficiency (131). It has been demon-
strated that up to 60% of critically ill patients in the ICU 
present with some degree of Mg2+ deficiency (132). In 
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addition, people with hypertension, CVD, diabetes, and 
obesity are at high risk of developing COVID-19 (133).  
It is well known that these aging-related diseases are all 
characterized by hypomagnesemia and are associated 
with low-grade inflammation. Low Mg2+ status is believed 
to stimulate granulocyte oxidative burst, activate endothe-
lial cells, and upregulate the production of cytokines, thus 
promoting inflammation that might lead to diseases (33). 
Mg2+ also leads to increased plasminogen activator inhibi-
tor-1 (PAI-1) production and the inhibition of fibrinolysis, 
which may be associated with the elevated D-D dimer ob-
served in COVID-19 (134). Moreover, COVID-19 could 
directly infect endothelial cells via ACE2 receptor, which 
induces cytokine storm, thus increasing permeability, va-
soconstriction, and fostering thrombogenesis, while Mg2+ 
is significant in maintaining endothelial function and vas-
cular integrity (135, 136). Collectively, a low Mg2+ status 
might accelerate the progression of COVID-19 from mild 
to serve stages, and Mg2+ supplementation might be one 
of the feasible treatment modalities, especially in severe 
patients (137).

Conclusion and perspectives 
Mg2+ is an indispensable cation in human body regu-
lating a variety of  physiological and pathological pro-
cesses. Under normal conditions, intracellular and 
extracellular Mg2+ levels are tightly controlled through a 
complicated Mg2+ transport system, and dynamic Mg2+ 
homeostasis is critical for human health. However, al-
tered Mg2+ status also contributes to the molecular hall-
marks of  the aging process. Emerging evidence indicates 
that Mg2+ plays an important role in multiple aging-re-
lated diseases including the COVID-19 pandemic. The 
modulation of  Mg2+ status might be a promising thera-
peutic option for human disease, which deserved further 
investigation.
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