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Functional studies of the coronavirus nonstructural proteins
Yanglin QIU and Kai XU* 

ABSTRACT
Coronaviruses, including SARS-CoV, SARS-CoV-2, and MERS-CoV, have caused contagious and fatal 
respiratory diseases in humans worldwide. Notably, the coronavirus disease 19 (COVID-19) caused by 
SARS-CoV-2 spread rapidly in early 2020 and became a global pandemic. The nonstructural proteins 
of coronaviruses are critical components of the viral replication machinery. They function in viral RNA 
transcription and replication, as well as counteracting the host innate immunity. Studies of these proteins 
not only revealed their essential role during viral infection but also help the design of novel drugs targeting 
the viral replication and immune evasion machinery. In this review, we summarize the functional studies of 
each nonstructural proteins and compare the similarities and differences between nonstructural proteins 
from different coronaviruses.
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Introduction
  The coronavirus (CoV) outbreaks among human 
populations have caused three major epidemics 
worldwide, since the beginning of the 21st century. These 
are the epidemics of the severe acute respiratory syndrome 
(SARS) in 2003 (1, 2), the Middle East respiratory 
syndrome (MERS) in 2012 (3, 4), and the coronavirus 
disease 19 (COVID-19) in 2020 (5-9).
  Coronaviruses belong to the family Coronaviridae in 
the order Nidovirales (10). The Coronaviridae family 
has four genera, Alphacoronavirus, Betacoronavirus, 
Gammacoronavirus, and Deltacoronavirus. Currently, 
seven coronaviruses are known to infect humans. These 
include two alphacoronaviruses, human coronavirus 229E 
(HCoV-229E) (11) and HCoV-NL63 (12), as well as five 
betacoronaviruses, HCoV-OC43 (13), HCoV-HKU1 
(14), SARS-CoV (15), MERS-CoV (4), and the novel 
coronavirus that causes COVID-19 (2019-nCoV) (5, 7, 9). 
The 2019-nCoV was later renamed to SARS-CoV-2 by 
the International Committee on Taxonomy of Viruses 
(16), due to high sequence homology and same receptor 
requirements shared with SARS-CoV (9).
  The genome of coronaviruses is a nonsegmented, 
positive-sense, single-strand RNA of about 28 - 32 nt in 
length (17), which encodes for six major open reading 
frames (ORFs) and a various number of accessory 

genes (18). The first two major ORFs (ORF1a, ORF1ab) 
are the replicase genes, and the other four encode viral 
structural proteins that comprise the essential protein 
components of the coronavirus virions, including the spike 
surface glycoprotein (S), envelope protein (E), matrix 
protein (M), and nucleocapsid protein (N) (14, 19, 20).
  In the case of betacoronavirus, ORF1a translates 
into a polyprotein. It is subsequently cleaved into 11 
nonstructural proteins (nsp1-11) by itself or by nsp3 
and nsp5, which contains the papain-like (21) and 
Chymotrypsin-like protease activities (22), respectively. 
ORF1ab is a polyprotein produced by translational 
readthrough of -1 ribosomal frameshift, which occurred 
at the coding region of nsp11. As a result, ORF1ab 
polyprotein carries the nsp1-10 at its N-terminus and 
five more nonstructural proteins (nsp12-16) on the 
C-terminus. These nonstructural proteins synergistically 
form the cytoplasmic membranous organelle-like viral 
replication/ transcription complexes (TRCs) (23). Besides 
the essential roles in viral RNA replication and 
transcription (18, 24-33), nonstructural proteins also 
determine the viral pathogenesis (18, 29, 34) as well as 
counteracting the cellular immune responses (21, 34-41). 
The coronavirus TRCs are among the most complex viral 
replication compartments (VRCs) known for positive-
strand RNA viruses (23, 42, 43).
  Besides its complex nature, structures of most of the 
nonstructural proteins have been determined (26, 44-58). 
These structures not only provide the functional insights 
of nonstructural proteins but also help the design of novel 
drugs targeting the viral replication and immune evasion 
machinery (47, 59-62). These studies facilitate our 
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understanding of how viruses establish their infection 
and provide the foundations for the development 
of efficient antiviral strategies. Here we summarize 
current knowledge on each nonstructural proteins of 
coronaviruses.

Nsp1: the immune repressor
  Nsp1 is the very 5’ proximal nonstructural protein of 
β-CoVs. It is released by PLpro at conserved proteolytic 
sites from polyprotein encoded by ORF1ab (63-65) 
(Reviewed in Table 1). Due to the severe outbreak of 
SARS in 2003, SARS-CoV nsp1 is among the most 
extensively studied. SARS-CoV nsp1 is 20-kDa in 
size and distributed in the cytoplasm when transiently 
expressed in 293 cells (66). It was first observed that 
SARS-CoV nsp1 transient expression strongly inhibited 
IFN-β mRNA accumulation during Sendai virus infection, 
and promoted degradation of overexpressed exogenous 
mRNA and host endogenous mRNA, leading to an overall 
decrease in protein synthesis (66). Similar results were 
then obtained from studies on other β-CoVs including 
mouse hepatitis virus (MHV), bat coronavirus strains 
(Rm1, 133, and HKU9-1), and on a β-CoV human 
coronavirus 229E (HCoV-229E) (67, 68). These findings 
suggest that host translation arresting is a common feature 
during coronavirus infections.
  The nsp1-mediated translation inhibition can be 
reproduced in the cell-free translation system (69). 
SARS-CoV nsp1 was demonstrated to bind and 
inactivate the 40S ribosomal subunits, resulting in 
translational inhibition. Meanwhile, the nsp1 protein, in 
its 40S ribosomal subunit binding form, could recruit 
a cellular endonuclease to mediate mRNA cleavage in 
the 5’ untranslated region (5’-UTR) (70). Subsequently, 
5’-truncated host mRNAs were degraded by host 5’ - 3’ 
exonuclease Xrn1 (71). Interestingly, protein translation 
under the control of internal ribosome entry site (IRES) 
from hepatitis C or cricket paralysis viruses, but not 
encephalomyocarditis virus, could escape from the SARS-
CoV nsp1-mediated RNA cleavage, possibly due to 
different requirement for translational initiation factors in 
forming 48S initiation complex with the 40S subunit (69).
  A SARS-CoV nsp1 mutant with two positively charged 

amino acid substitutions (R124A/K125A) loses the target 
mRNA/viral RNA binding and mRNA cleavage function 
but remains the ability to inhibit translation (72). MERS-
CoV nsp1 contains the same RK motif. Nevertheless, 
this RK motif is not involved in binding to mRNAs but 
is required for the RNA cleavage. Instead, the R13 on the 
first alpha-helix of MERS-CoV nsp1 that is missing from 
SARS-CoV nsp1 is essential for mRNA binding (73).
  Another SARS-CoV nsp1 mutant K164A/H165A was 
unable to bind to the 40S subunit and lost the ability to 
interfere with host gene expression (69). When the same 
mutations (K164A/ H165A) were introduced to SARS-
CoV infectious clone, the recovered virus was replication-
incompetent and unable to suppress innate immune 
responses or degrade host mRNA (66). A similar study 
was performed with MHV. MHV-nsp1-Δ99, which lacked 
99 nucleotides in the nsp1 coding region essential for 
host translation arresting, could not reproduce well in 
wild-type mice (67). Moreover, the MHV-nsp1-Δ99 mutant 
restored its replication to the wt virus level when infecting 
mice defected in the type I interferons (IFN-I) recognition, 
highlighting the role of nsp1 in counteracting the IFN-I (72). 
Notably, the SARS-CoV-2 nsp1 shares a high protein 
sequence identity of 84.44% with SARS-CoV nsp1, 
including R124/K125 for mRNA binding (red-colored) 
and cleavage (asterisked, Figure 1), K164/H165 for 
translation shutoff (green colored, Figure 1), suggesting 
a likely same role of SARS-CoV-2 nsp1 in counteracting 
host immune responses.
  SARS-CoV genomic RNA and subgenomic RNAs are 
somehow resistant to the nsp1 induced RNA cleavage (70). 
The resistant element was mapped to the 5’-end leader 
sequence of SARS-CoV RNAs, which contains two 
important nucleotides AU at the very 5’ terminal, followed 
by AUUA. Coincidently, the SARS-CoV-2 genome also 
starts with the same two nucleotides AU, followed by 
UAAA. Whether SARS-CoV-2 avoids nsp1 mediated 
RNA cleavage by the same RNA coding remains to be 
answered.

Nsp2: fine-tuner of replication
  Nsp2 is the most variable nonstructural protein among

Table 1 Proteolysis sites of the ORF1a/ORF1ab polyproteins. The polyproteins were cleaved by the nsp3 papain-like protease and the 
nsp5 3C-like protease, resulting in the release of sixteen nonstructural proteins. The position of the scissors represents the cleavage site.

nsp1 nsp2 nsp3 nsp4 nsp5

SARS-CoV-2 …ELNGG AYTR…TLKGG APTK…ALKGG KIVN…AVLQ SGFR…VTFQ

SARS-CoV …ELNGG AVTR…RLKGG APIK…SLKGG KIVS…AVLQ SGFR…VTFQ

MERS-CoV …KLIGG DVTP…RLKGG APVK…KIVGG APTW…GVLQ SGLV…VVMQ

3C-like protease clevage sites

papain-like protease clevage sites

nsp5 nsp6 nsp7 nsp8 nsp9 nsp10 nsp11 nsp12 nsp13 nsp14 nsp15 nsp16

SARS-CoV-2 SGFR…VTFQ SAVK…ATVQ SKMS…ATLQ AIAS…VKLQ NNEL…VRLQ AGNA…PMLQ SADA… …TVLQ AVGA…ATLQ AENV…TRLQ SLEN…PKLQ SSQA…

SARS-CoV SGFR…VTFQ GKFK…ATVQ SKMS…ATLQ AIAS…VKLQ NNEL…VRLQ AGNA…PLMQ SADA… …TVLQ AVGA…ATLQ AENV…TRLQ SLEN…PKLQ ASQA…

MERS-CoV SGLV…VVMQ SGVR…AAMQ SKLT…SVLQ ATLS…VKLQ NNEI…VRLQ AGSN…AALP QSKD… …TVLQ AVGS…YKLQ SQIV…TKVQ GLEN…PRLQ ASAD…
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SARS CoV-related viruses (74). A comparative analysis 
of the protein sequences of SARS-CoV-2 with SARS-
CoV showed 61 amino acid substitutions in nsp2 between 
these two viruses (20). Due to the sequence variability of 
nsp2 among coronaviruses, it was speculated that nsp2 
protein coevolved with the hosts to acquire host-specific 
functions, and modulating infection (75). A study utilizing 
nsp2-deleted MHV or SARS-CoV recombinant clones 
showed that nsp2 is required for optimal viral replication (30). 
When the nsp2 was deleted from the viruses, the viral 
titer, and viral RNA synthesis rate moderately reduced 
compared to the wild type virus. Nsp2 is shown to localize 
to the viral TRCs (43). However, MHV mutant with nsp2 
deletion did not affect the morphology and subcellular 
localization of the TRCs (30). Importantly, Nsp2 
expressed from other genomic loci still could not rescue 
the replication deficiency, pointing out that the function 
of nsp2 in viral growth depends on its correct genomic 
loci between nsp1 and nsp3 (76). Nsp2 was known to 
from nsp2-nsp3 proteolytic intermediate (30). Nsp2 may 
regulate protease cleavage in the form of nsp2-nsp3, thus 
fine-tuning the viral replication.

Nsp3: the scaffold protein and protease
  Nsp3 is the largest among all the nonstructural proteins 
of β-CoV. It is cleaved off from ORF1a/ORF1ab by the 
papain-like protease domain or PL2pro domain that is 
within nsp3 itself. The function of nsp3 is to mediate the 
genome replication/transcription (77-80) and pathogenesis 
(81).  Due to i ts  large size and complex domain 
organization, nsp3 interacts with other nonstructural 
proteins (77, 78), structural proteins (79, 80), and host 
proteins (62) as a scaffold during viral infection (33). 
The SARS-CoV or SARS-CoV-2 nsp3 contains 16 
domains (Figure 2), namely Ubiquitin-like domain 1 

(Ubl1), Hypervariable region (HVR) or acidic domain, 
Macrodomain I/II/III (MacI/II/III), Domain Preceding 
Ubl2 and PL2pro (DPUP), Ubiquitin-like domain 2 (Ubl2), 
Papain-like protease two domain (PL2pro), Nucleic acid-
binding domain (NAB), betacoronavirus-specific marker 
domain (βSM), Transmembrane domain 1 (TM1), Nsp3 
ectodomain (3Ecto), Transmembrane domain 2 (TM2), 
Amphipathic helix region (AH1), domains specific to 
Nidovirales and Coronaviridae (Y1 & CoV-Y) (82). 
These domains function synergistically to regulate viral 
infection.
  Ubl1 is the first domain that locates on the N-terminus 
of β-CoV nsp3. The Nuclear magnetic resonance (NMR) 
structure of Ubl1 showed that the Ubl1 domain is 
structurally similar to ubiquitin-like proteins, albeit two 
additional helices (310 helix and α helix) make the core 
structural more oval other than globular, comparing to 
human Ubiquitin or ISG15 (58, 82). Ubiquitination and 
ISGylation are associated with host regulation of innate 
antiviral responses (83-86), but the role of mimicry of 
ubiquitin by ubl1 (as well as ubl2) is currently unknown. 
It is reasonable to speculate that the ubiquitin-like 
domains of nsp3 could bridge the protease function of 
nsp3 to ubiquitination machinery in the cell and interfere 
with host antiviral immunity.
  Ubl1 domain of nsp3 was shown to predominantly bind 
to single-stranded trinucleotide RNA sequence AUA, as 
mass-spectrometry analysis of the purified recombinant 
SARS-CoV Ubl1 from E. Coli. revealed co-purified 
unique RNA fragments (58). It is noted that both SARS-
CoV and SARS-CoV-2 have AU-rich 5’-UTR or even 5’ 
terminus in their genomic or subgenomic RNAs (20, 70). 
Whether this coincidence has a functional role remains 
to be tested. In addition to the studies on SARS-CoV, the 
Ubl1 domain of MHV nsp3 was found to bind to the viral.
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Figure 1. Alignment of nsp1 protein sequences of MERS-CoV, SARS-CoV, and SARS-CoV-2. The sequences of nsp1 from MERS-
CoV (accession no. JX869059), SARS-CoV (accession no. AY278741), and SARS-CoV-2 (accession no. NC_045512) were aligned, 
and identical amino acids are highlighted. Amino acids essential for mRNA binding are colored in red, while those responsible for host 
translation shutoff are colored in green. Asterisked are the sites important for RNA cleavage.
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N protein (80). This interaction is essential for N protein-
mediated enhancement of viral infectivity (79).
   The HVR domain locates at the C-terminus of the Ubl1 
domain. HVR, also known as acidic domain, is rich in 
negatively charged amino acids aspartic acid (Asp/D) 

and glutamic acid (Glu/E). As its name indicates, it is the 
most variable region found in nsp3. Amino acids sequence 
identity between SARS-CoV HVR and SARS-CoV-2 
HVR is 47.14%, much lower than the 76.6% overall 
nsp3 amino acid sequence identity. The HVR region is 

Ubl1

HVR

MacI

MacII

MacIII

DPUP Ubl2

PL2pro

NAB

βSM

TM1 3Ecto

TM2 AH1

Y1&CoV-Y

Figure 2. Sequence alignment of SARS-CoV nsp3 vs. SARS-CoV-2 nsp3. The domain organization of nsp3 is lined in different colors.
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intrinsically disordered in SARS-CoV (58) and MHV (57). 
The same feature is also observed in SARS-CoV-2 as 
well as in three highly similar bat coronavirus isolates 
BatCoV RaTG13 (accession no. MN996532) (9), Bat SL-
CoV VZC45 (accession no. MG772933), and Bat SL-
CoV VZXC21 (accession no. MG772934) (63) which 
show high nucleotide identity and protein identity to 
SARS-CoV-2 (Figure 3A). There are 45 consensus amino 
acids in the HVR among SARS-CoV-2 and these three 
bat viruses (Figure 3B), of which 48.9% are Asp/Glu. 
In the nonconsensus regions, the Asp/Glu percentage is 
20%, 20.4%, 15.2%, and 8.3% for SARS-CoV-2, Bat-
CoV RaTG13, Bat SL-CoV VZC45, and Bat SL-CoV 
VZXC21, respectively, and is much lower than that of the 
consensus sequence. These differences of HVR Asp/Glu 
percentage between consensus and nonconsensus regions 
indicate a possible function of negatively charged amino 
acids in viral replication that was selected during viral 
evolution. But currently, the exact role of HVR in the viral 
life cycle is unknown, studies on MHV suggest HVR is 
dispensable for viral infection in vitro (79).
  Following the HVR is the Macrodomain I (MacI, 
previously known as X domain). Macrodomains are 
evolutionarily conserved domains that are ubiquitously 
existing in prokaryotes and eukaryotes. Three decades 
ago, bioinformatic analyses identified that members in 

Coronaviridae, Togaviridae, and Hepeviridae families 
encode this conserved domain of an unknown function, 
to which the name X domain was given (29, 59, 87-89). 
Protein crystallography studies on macrodomains 
of SARS-CoV (90, 91), MERS-CoV (54), and other 
coronaviruses (55, 56, 90) showed a three-layered 
alpha/beta/alpha core fold similar to the C-terminal 
nonhistone region of MacroH2A, a variant of human 
histone H2A (92). Macrodomains of SARS-CoV and 
some other coronaviruses contain in vitro ADP-ribose-
1″-phosphate phosphatase (ADRP) activity (90, 91), de-
mono-ADP-ribosylation (deMARylation) activity (36), 
and  de-poly-ADP-r ibosyla t ion  (dePARyla t ion) 
activity (93). Studies by using a series of mutations on 
SARS-CoV and MHV showed that ADRP, deMARylation, 
and dePARylation activities of MacI are essential to 
viral virulence in vivo by suppressing the innate immune 
responses (36, 81, 91). These sites are conserved between 
SARS-CoV and SARS-CoV-2 (29) (Figure 2, boxed in red).
  The SARS-CoV MacII+MacIII+DPUP forms a 
previously recognized SARS-unique domain (SUD), 
although more reports on betacoronavirus genome 
sequences suggest that this domain is not unique to SARS-
CoV (94). MacII is the second marcodomain locating at 
the C-terminal side of MacI, and is dispensable for SARS-
CoV replicon replication, while the third macrodomain
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Figure 3. The HVR region of SARS-CoV-2 and its hypothetical ancestors is intrinsically disordered. A. The degree of disorder 
is shown graphically based on the analysis of IUPred2A (226). A score of more than 0.5 is considered disordered. B. The alignment of 
HVR region shows a high degree of negatively charged amino acid percentage in conserved amino acids.
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(MacIII) is required for SARS-CoV replication (32). 
MacIII binds to the G-quadruplexes formed by the 
Quadruplex forming G-Rich Sequences (QGRS) located 
in the nsp2 and nsp12 coding region (95). The MacII-III 
region also preferentially binds to oligo(G)-strings, which 
are present in the 3’-UTR of human mRNAs encoding 
defense-related genes (96). These RNA binding features 
are possibly essential for viral replication. DPUP is the 
domain that follows the MacIII. SARS-CoV lacking this 
domain displays reduced viral RNA even though the virus 
is still viable (32). Although the DPUP of SARS-CoV 
and MHV resembles a frataxin-like structure (95), which 
may involve controlling cellular oxidative stress (97, 
98), the exact role of DPUP in viral infection is currently 
unknown.
  Ubl2+PL2pro locates immediately downstream of DPUP. 
Ubl2+PL2pro of SARS-CoV and MERS-CoV were shown 
to modulate host innate immune responses (35, 99), 
albeit such immune suppression activity was separately 
reported to be only restricted in PL2pro (41). Papain-
like protease 2 (PL2pro) is the protease domain within 
nsp3, which recognizes conserved motifs (Table 1) in 
the conjunction part of nsp1/nsp2, nsp2/nsp3, and nsp3/
nsp4. In SARS-CoV and SARS-CoV-2, these motifs share 
XLXGG↓pattern, in which ↓ is the cleavage site. MERS-
CoV contains the same pattern except for the cleavage 
site between nsp3 and nsp4 is KIVGG↓. These protease 
processing sites resemble the very C-terminal ends of 
ubiquitin and ubiquitin-like protein ISG15 (53), which is 
RLRGG and can be removed by deubiquitinating enzymes 
and deISGylating enzymes. Interestingly, the PL2pro also 
possesses DUB and deISGylating activities besides its 
proteolytic activity (21, 41, 100-102). Ubiquitination 
and ISGylation play a central role in immune responses 
against viruses (85, 86, 103). Membrane-anchored SARS-
CoV PL2pro domain (PL2pro-TM) could physically interact 
with STING (stimulator of IFN genes) - TRAF3 (The 
tumor necrosis factor receptor-associated factor 3) -TBK1 
(TANK-binding kinase 1) complex and deubiquitinate 
intracellular dsRNA sensor RIG-I, STING, TRAF3, 
TBK1, and the transcription factor interferon regulatory 
factor 3 (IRF3) which cascadingly activate the IFN-β 
production pathway (104). SARS-CoV PL2pro also 
removes Lys63-linked ubiquitin chains of TRAF3 and 
TRAF6, leading to suppression of the TLR7 signaling 
pathway (105). Human coronavirus NL63 (HCoV-NL63) 
deubiquitinates and stabilizes the E3 ubiquitin ligase 
MDM2 to increase the degradation of tumor suppressor 
p53 (40). Besides its DUB and deISGylating activities, 
coronavirus papain-like protease also depends on its 
interaction with host proteins to counteract host antiviral 
responses (106).
  The NAB domain, which only exists in betacoronaviruses (94), 
forms flexibly extended linkers between the PL2pro domain 
and the following domains of nsp3 (52). NAB domain 
could bind to RNA, especially repeats of GGGs (52), 
similar to the RNA recognition pattern of MacIII (95). 
Betacoronavirus-specific marker (βSM) domain follows 
NAB within nsp3. SARS-CoV βSM is intrinsically 

disordered (82), and its role in the viral life cycle is 
currently unknown.
  Downstream of βSM domain is the transmembrane 
region that contains two transmembrane domains (TM1/2) 
and one luminal loop domain (3Ecto) (94). Subcellular 
localization analysis of SARS-CoV nsp3 truncated 
mutants revealed that the TM1/2 and the luminal 3Ecto 
domain are essential for the recruitment of nsp4 to discrete 
ER loci (78). The luminal 3Ecto domain of nsp3, possibly 
forming a disulfide bond, was proposed to interact with the 
luminal domains of nsp4 to “zipper” the ER membrane and 
induce discrete membrane formation (78). This membrane 
modification was recognized as the first step in forming 
the ER-origin viral replication organelles (28). Nsp3-nsp4 
interaction of MERS-CoV also leads to the zippering of 
ER membranes and subsequent formation of Double-
Membrane Vesicles (DVMs) (107).
  AH1+Y1 & CoV-Y domain is the C-terminal portion of 
nsp3 that is facing towards the cytosol. AH1 encodes a 
predicted transmembrane domain that was shown to be a 
cytosolic region in SARS-CoV and MHV (42). Currently, 
the functions of these domains are less well understood as 
the N-terminal nsp3.

Nsp4: the DVM builder
  Coronavirus nsp4 is an integral membrane protein with 
four transmembrane domains (42). In partnership with 
nsp3, it plays an essential role in the formation of the 
membranous structure of TRCs (27, 107, 108). SARS-
CoV or MERS-CoV nsp4 /nsp3 localized to the reticular 
ER membrane when expressed separately (78, 107). 
However, when nsp4 and nsp3 were coexpressed, the 
formation of distinct perinuclear loci representing stacked 
double ER membranes was observed (78, 107). Such 
membrane rearrangements represent the critical step in 
TRCs formation. The N-terminus nsp4, including the first 
transmembrane domain and the first luminal loop region 
between TM1 and TM2, is required for this membrane 
rearrangement (78). The C-terminal TM4 and cytosolic 
part of nsp4 are dispensable for either formation of SARS-
CoV induced aggregated ER loci (78), or efficient viral 
growth of MHV (27). 
  This first luminal region of SARS-CoV nsp4 could 
interact with the nsp3 luminal 3Ecto domain to bring two 
ER membranes in close proximity (109). This region was 
predicted to be glycosylated for various of coronaviruses (108). 
When glycosylated sites of this region were mutated in 
MVH, viral growth was reduced along with deficient 
DVM formation (108). Two-amino acid changes (H120N/
F121L) near the SARS-CoV nsp4 glycosylation site 
(N131) abolished the nsp4-nsp3 interaction and also led 
to reduced genome replication and viral production (109). 
Comparing with SARS-CoV, the emerging SARS-CoV-2 
contains same sites including both nsp3-interacting H120/
F121 and the N131 glycosylation site (Figure 4).

Nsp5: the main protease
  Coronavirus nsp5 encodes an enterovirus 3C-like 
protease (3CLpro) conserved across the Nidovirales (19).
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It is a cysteine protease with a chymotrypsin-like fold and 
is often referred to as the main protease (Mpro). Similar to 
the PL2pro, 3CLpro is essential to the nonstructural protein 
processing by cleavage at 11 sites downstream of the nsp4 
coding region (Table 1). SARS-CoV nsp5 consists of an 
N-terminal domain with proteolytic activity, as well as a 
C-terminal domain that contains five alpha-helices (22, 51, 
110, 111). SARS-CoV 3CLpro has at least three formats, 
an inactive monomer (22, 112), an active homodimer (22, 
51, 111, 112), and a highly active homooctamer (110). 
Besides its proteolytic activity, porcine deltacoronavirus 
(PDCoV) nsp5 cleaves Signal transducer and activator of 
transcription 2 (STAT2) at two locations with glutamine 
(Q) residue at the P1 position, leading to the inhibition 
on the transcription of IFN-stimulated genes (39). 
Deltacoronavirus nsp5 also targets the NF-κB essential 
modulator (NEMO) for degradation and also suppresses 
type I IFN production (37, 38). Thus, coronavirus nsp5 
assists viral infection by proteolytically releasing nsp4-
16, and suppresses innate immune responses by digesting 
essential enzymes in the immune signal transduction 
pathway.

Nsp6: forming DVM and activating autophagy
  Coronavirus nsp6 is a transmembrane protein with 
six transmembrane domains (77). When expressed 
alone, it localized to ER and induced the generation of 
DFCP1 (Double FYVE domain-containing protein 1) - 
positive early autophagosomes, or omegasomes. Such 
a structure can mature into autophagosomes that are 
capable of delivering LC3 for lysosomal degradation 
(113). Autophagy is not required for either coronavirus 
replication or antiviral responses in vitro. The knockout 
of ATG5 or ATG7, essential genes in the autophagy 
pathway, does not affect betacoronavirus MHV replication 
(114, 115). ATG5 silencing in Vero cells or treatment 
with wortmannin, the class3 PI3K inhibitor, also does 
not affect replication of the Infectious bronchitis virus 
(IBV), a gammacoronavirus, (113). Although induction 
of autophagy is not required for coronavirus genome 
replication, the nsp6 plays a vital role in the viral life 
cycle. Coronavirus encodes three nonstructural proteins 
with transmembrane domains, nsp3, nsp4, and nsp6. 
While nsp3+nsp4 only produces aggregated zippered 
ER structures or maze-like body, nsp6 expression in 
addition to nsp3+nsp4 leads to the DMVs formation (77), 
resembling the authentic membranous structures of TRCs 
(77). Two HCoV-229E mutants, both contain single amino 
acid mutation on nsp6, confer antiviral drug K22 resistant, 
and result in partial recovery of drug-related DVMs 
loss. These mutations affected progeny infectivities, 

suggesting that nsp6 is critical for the viral life cycle (61). 
Although nsp6 expression induces autophagosomes-like 
DVMs, coronaviruses do not require autophagy for viral 
replication. Nsp6 or coronavirus likely recruits some host 
proteins shared with the autophagy pathway for viral 
DVMs production. However, such speculation needs 
further investigation.

Nsp7+Nsp8: the RdRp cofactor
  Coronavirus nsp7 and nsp8 are indispensable and 
essential for viral survival (116). The crystal structure 
of SARS-CoV nsp7 with nsp8 is a hollow cylinder-like 
supercomplex, formed by two asymmetric units. Each unit 
includes four nsp7 and four nsp8 (26). In the nsp7+nsp8 
supercomplex, a channel structure is apparent (26). The 
channel is mainly formed by the bridging of the four 
long helices of N-terminus nsp8, of which the structure 
resembles the “shaft” of a “golf-club” (26). Mutations 
on the positive-charged amino acids on this “shaft” 
region significantly reduce dsRNA binding ability of the 
supercomplex, while the mutations of positive-charged 
amino acids on nsp7 near the channel structure do not (26).
  Unlike nsp12, nsp8 is a non-canonical RNA-dependent 
RNA polymerase (RdRp) that does not encode the 
conserved RdRp motif (117). SARS-CoV nsp8 could 
initiate short oligonucleotide (< 6 nt) synthesis at an 
internal template cytidine with a distance of at least 
two nucleotides from the 3’-end (117). A later study 
misinterpreted this internal initiating primer synthesis 
ability from nsp8 as the de novo initiation (118). In this 
study, the authors also reported that nsp8 has primer 
extension activities (118). The association of nsp8 with 
nsp7 was shown to enhance thermal stability (117) and 
primer extension activity of nsp8 (118). Thus, SARS-
CoV nsp8, together with nsp7, provides RNA primer 
internally complementary to the viral genomic RNA for viral 
replication, which also requires the “main” RdRp nsp12 (119).
  Nsp7+nsp8 complex of feline coronavirus (FCoV), 
an alphacoronavirus, is a 2:1 heterotrimer containing 
two conformational different nsp7 molecules and one 
nsp8 molecule. Two copies of heterotrimers could bind 
to each other through nsp8-nsp8 interaction and form a 
heterohexamer (120). This nsp7+nsp8 complex is also 
capable of synthesizing short oligonucleotides (120). 
Similar to FCoV, the alphacoronavirus HCoV-299E nsp7-
10 polyprotein has this noncanonical RdRp activity as 
well (120).
  However, due to the internal initiation nature of the nsp8 
primase, the model including primer synthesis of nsp8 
plus the primer-dependent RdRp activity of nsp12 still 
could not provide mechanism insights for the viral RNA  

RAINGDFLHFLPRVFSAVGNICY 

RTTNGDFLHFLPRVFSAVGNICY SARS-CoV-2 nsp4

SARS-CoV   nsp4 134

134

Figure 4. SARS-CoV-2 and SARS-CoV nsp4 share identical amino acids responsible for DVM formation.
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synthesis of the 5’-end. On the other hand, a later study on 
the nsp7+nsp8+nsp12 complex showed that this protein 
complex possesses both de novo initiation and primer 
extension RdRp activities. In this work, the nsp7+nsp8 
complex indeed misses the de novo initiation activity, 
suggesting that this activity is mediated by nsp12 (119). 
Furthermore, the primase activity of nsp8 was not 
observed (119). Recently a single particle cryo-electron 
microscopic structure of nsp12 with nsp7 and nsp8 shows 
a heterodimer of nsp7+nsp8 as well as second nsp8 
subunit binding to the N-terminal region of nsp12 (44). 
This structure favors biochemically established de novo 
initiation activity of nsp7+nsp8+nsp12 complex (119), 
where nsp7+nsp8 does not mediate RNA primer synthesis 
or form the higher-order oligomer (26, 117).
  In SARS-CoV infected Vero cells, nsp8 can be detected 
as two forms, a 22 kDa full-length protein and a ~15 kDa 
version (65). The later was confirmed to be N-terminally 
truncated version (nsp8C) by western blotting analysis using 
an antibody only recognizing the C-terminal part (121). 
Nsp7+nsp8C forms a structure that displays the ability to fuse 
into the nsp7+nsp8 hexadecamer and was proposed to help 
the virus switch the replication to genome assembly (121).

Nsp9: the dimer forming RNA binding protein
  Nsp9 is a ~12kDa proteolytic cleavage product of pp1a 
that has the nucleic acid binding activity (45, 122). It 
preferentially binds to single-stranded RNA (45, 122, 
123). Biotin pull-down assay showed that IBV nsp9 
preferentially interacts with the 3’-UTR region of the 
positive-strand viral RNA (124, 125). Nsp9 can interact 
with itself as well as the non-canonical RdRp nsp8 (124-
127). Like most of the coronavirus nonstructural proteins, 
it locates in the viral TRCs (65, 128).
  The crystal structure of the nsp9 monomer revealed 
a cone-shaped N-terminal β-barrel composed of seven 
β-strands and a C-terminal α-helix that is conserved 
among alpha-, beta, and gamma-CoVs (45, 122, 123, 
129, 130). However, its dimerization varies among 
different coronaviruses. SARS-CoV, IBV, and porcine 
delta coronavirus (PDCoV) nsp9 were reported to form 
the “parallel helix-dimer” structure that stabilized by 
the hydrophobic interactions between two C-terminal 
α-helices. PDCoV nsp9 dimer is slightly different in that 
it also requires the N-terminal extended finger motif 
to stabilize the dimer structure. Besides, SARS-CoV 
nsp9 can form the “sheet-dimer” structure formed by 
interactions between β-strand five from both subunits (45). 
HCoV-229E nsp9 forms an “anti-parallel helix dimer” that 
requires interaction between two α-helices in the opposite 
direction with disulfide-bond from two nsp9 subunits (123). 
The porcine epidemic diarrhea virus (PEDV) nsp9 forms 
two possible dimer structure resembles the “parallel 
helix-dimer” and “sheet-dimer” stabilized by a disulfide-
linkage (129).
  Albeit various of dimerization structures, the dimer 
formation could enhance the nucleic acid binding and 
viral replication (123, 129-131). Mutations of the protein-
protein interaction motif GXXXG on the C-terminal 

α-helix of SARS-CoV nsp9 disrupted dimer formation, 
and significantly decreased RNA binding of nsp9. The 
corresponding mutations in the SARS-CoV genome 
were either lethal to the viral growth or reverted to wt 
type amino acid coding (131). Similarly, the G98D 
mutant of IBV nsp9 significantly destabilized homodimer 
and also abolished the activity of RNA binding. The 
incorporated viral mutant was deficient in subgenomic 
RNAs transcription as well as viral growth. Interestingly, 
IBV nsp9 mutation I95N showed almost no effect on 
the RNA binding activity but moderately destabilized 
dimer formation, while the virus with this mutation has 
severe growth defects(132). Nsp9 dimerization may have 
essential roles in replication beyond the RNA binding.

Nsp10: cofactor in viral replication
  Nsp10 is a zinc finger protein that contains two zinc 
finger domains conserved among coronaviruses (49, 50, 
133). Several oligomer forms were reported for nsp10. 
MHV nsp10 shows the monomeric form in reducing SDS-
PAGE and gel filtration analysis. At the same time, it 
also forms ~80 kDa and ~19600 kDa protein complexes 
when supplemented with zinc ions in dynamic light 
scattering assay (133). SARS-CoV nsp10 was reported 
to form a dimer in solution analyzed by gel filtration 
(50). A simultaneous report on SARS-CoV nsp10 also 
revealed a dodecameric structure (49). Currently, no 
evidence confirmed the biological relevance of nsp10 
oligomerization in viral replication.
  Nsp10 is essential to coronavirus infection. A 
temperature-sensitive mutation of nsp10 (Q65E) 
significantly inhibited MHV RNA synthesis at the 
nonpermissive temperature (134). Furthermore, the 
reverse-genetics study identified 16 nsp10 mutants of 
MHV clone, of which eight were viable but displayed 
attenuated viral growth, while the other eight clones were 
inviable (135). One of the nsp10 mutant (D47A/H48A) 
was studied into depth and had subtle effects on nsp4-
10/11 polyprotein processing.
  During viral replication, nsp10 enhances the enzyme 
activities of other replication proteins (136-138). SARS-
CoV nsp10 interacts with the exoribonuclease domain of 
nsp14, resulting in significantly increased exoribonuclease 
activity (136). Mutations on MHV nsp10 (R80A/E82A) 
led to increased sensitivity of the virus towards RNA 
mutagen treatments (25), suggestive of the involvement of 
nsp10 in coronavirus proof-reading function, which relies 
on the exoribonuclease activity of nsp14. A heterodimer 
complex structure was also identified for nsp10/nsp16 (137). 
Nsp10 interacts with the nsp16 S-adenosyl-L-methionine 
(SAM)-binding pocket and stimulates the association of 
both the methyl donor SAM and capped RNA acceptor to 
nsp16 (137), thus activates nsp16 to methylate coronaviral 
mRNA cap at the 2’O-site (139).
  In addition to the role as a part of viral TRCs, nsp10 is 
involved in the development of viral cytopathic effects. 
SARS-CoV nsp10 interacts with human NADH 4L subunit 
and cytochrome oxidase II and alters the activity of the 
NADH-cytochrome (140). Through these interactions,
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nsp10 caused an impaired oxidoreductase system and 
induced the depolarization of the mitochondria inner 
membrane (140). 

Nsp11: small peptide with unknown function
  Nsp11 is a small peptide located at the C-terminus of 
ORF1a. A three-stemmed mRNA pseudoknot containing a 
typical hepta-nucleotide sequence UUUAAAC is situated 
in the nsp11 coding region (141). This RNA structure 
results in a programmed -1 ribosomal frameshift, which 
leads to the production of ORF1ab (141, 142). 
  A proximity-labeling experiment identified the 
existence of nearly all nonstructural proteins in the 
microenvironment of MHV replication complexes, except 
for nsp11 (128). SARS-CoV nsp11 does not interact with 
other nonstructural proteins in the mammalian two-hybrid 
assay (124). Currently, no known function was discovered 
for nsp11. According to these data, nsp11 is likely not a 
member of the replication complexes. However, the exact 
role of nsp11 remains to be explored.

Nsp12: the main RdRp
  Nsp12 is the first nonstructural protein encoded by 
ORF1b and functions as the primary RNA-dependent 
RNA polymerase of coronaviruses. Nsp12 is at the center 
of the viral TRCs, which participate in both the synthesis 
of new full-length genomic RNA and the discontinuous 
transcription of subgenomic RNAs (18, 143-146).
  Coronavirus nsp12 mainly contains two functional 
domains. The C-terminal portion of nsp12 is the canonical 
RdRp domain that resembles a cupped right hand with 
fingers, palm, and the thumb holding the template RNA 
(44, 147). The palm subdomain is the catalytic core that 
contains a conserved SDD motif in the active site. Like 
other positive-strand RNA viruses, mutations on the SDD 
motif abolished its RdRp activity (148). Asides from the 
C-terminal polymerase domain, nsp12 also contains a 
Nidovirus RdRp-associated nucleotidyltransferase (NiRAN) 
domain, which is unique to the Nidovirales (44, 147). 
The arterivirus equine arteritis virus (EAV) nsp9 is the 
homolog of coronaviruses nsp12. The NiRAN domain 
of EAV nsp9 can be nucleotidylated, as a phosphoamide 
bond can be formed in between the protein and a GTP or 
UTP molecule (149). Single-particle cryo-EM imaging 
shows a structure where the NiRAN domain of nsp12 
interacts with an nsp7+nsp8 heterodimer as well as a 
second nsp8 (44). The interaction with nsp7 and nsp8 
cofactors seems to help stabilize the nsp12 RNA binding 
region as well as extending the RNA-binding surface (44). 
Genetic studies also supported the essential role of this 
nucleotidylating activity of nsp12 in EAV and SARS-
CoV replication (149); however, the exact function of this 
activity is still unknown.
  The SARS-CoV nsp12 RdRp activity was investigated 
after the outbreak of the SARS epidemic in 2002-2003 
by several groups. Early studies using recombinant nsp12 
showed a primer-dependent RNA polymerase activity 
(118, 119, 150). This primer-dependent RdRp activity of 
nsp12 was proposed to work with the nsp8 primase for the 

viral genome synthesis (118, 150). However, biochemical 
data of nsp8 lacking the de novo initiation RNA synthesis 
activity could not fill the gap in virus replication cycles, as 
to how the virus maintains its 5’-end can not be explained. 
The biochemical assay by using recombinant nsp12 and 
nsp7/nsp8 cofactors showed de novo initiation ability of 
nsp12 (119), while the nsp8 primase activity could not be 
detected. Cryo-EM structure of this complex supported 
the de novo initiation activity for the nsp12 polymerase. 
This structure clearly showed that the active site of the 
nsp8 primase could not fit into the nsp12 RNA synthesis 
pocket (44), further confirmed the biochemical finding 
that nsp8 does not have primase activity.

Nsp13: the helicase
  Helicases are the enzymes that unwind double-stranded 
DNAs or RNAs (151, 152). RNA viruses encode RNA 
helicases (153) or recruit host alternatives (154-156) 
to promote their genome replication and viral gene 
expression. Apart from the “pro-viral” functions, RNA 
helicases are also involved in host antiviral responses (157). 
Explicitly, both animal and plant host innate immune 
systems encode RNA helicases to recognize and respond to 
foreign double-stranded RNA in the cytoplasm (157-160).
  Coronavirus nsp13 encodes a C-terminal helicase domain 
that belongs to the superfamily one helicases (152). While 
at the N-terminus of nsp13 is a zinc-binding domain 
(ZBD), which is conserved among the members in 
Nidovirales (142, 161, 162). Nsp13 exhibits both RNA 
and DNA duplex unwinding activities in vitro shown by 
the biochemical study of recombinant nsp13 from HCoV-
229E (163, 164) and SARS-CoV (165, 166). Nsp13 
unwinds its substrates in a 5’- 3’ direction by using the 
energy generated from NTPs and dNTPs hydrolysis, 
with the most effectivity towards ATP, dATP, and GTP. 
Transient kinetic analysis showed that SARS-CoV 
nsp13 unwinds nucleic acid in discrete steps of 9.3 bp 
each, with a catalytic rate of 30 steps per second (167). 
Moreover, the unwinding activity can be enhanced 2-fold 
by nsp12 through nsp12-nsp13 interaction (167). Nsp13 
preferentially binds to 5’-overhang and processes the 
double-strand with higher activity (168). ZBD is essential 
for helicase activity, and replacement of conserved 
ZBD Cys and His residues disrupted ATPase activities 
of HCoV-229E nsp13 (161). In addition to NTPase and 
dNTPase activities, RNA 5’-triphosphatase activity was 
discovered for HCoV-229E and SARS-CoV nsp13, which 
may catalyze the first step in the formation of the 5’-cap 
structure of viral RNAs (164, 165). The NTPase activity 
of arterivirus nsp10, the homolog of coronavirus nsp13, 
is essential to the viral survival (169). While mutation 
(A335V) on the RNA binding channel of MHV nsp13 
conferred decreased viral replication both in vitro and in 
vivo (170).

Nsp14: dual-functional RNA modifier
  The CoV nsp14 has dual functions in viral RNA 
processing (142). The N-terminus of nsp14 is a 3’-5’ 
exonuclease (ExoN) (19). Nsp14 ExoN belongs to the
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DEDD superfamily of exonucleases. The exonuclease 
activity that acts on both ssRNA and dsRNA, but can 
not hydrolyze DNA or ribose- 2’-O-methylated RNA 
substrates in vitro (171). The ExoN activity can be 
stimulated to >35 fold by interacting with nsp10, and this 
complex can release one mismatched nucleotide from 
the 3’-end of the newly synthesized RNA strand (172). 
Coronavirus nsp14 ExoN activity is involved in the 
RNA proofreading machinery during viral replication. 
Mutant MHV or SARS-CoV with deficient ExoN activity 
displays a higher mutation rate and lower replication 
fidelity (173, 174). Moreover, ExoN is related to the host 
innate immune response. MHV lacking ExoN activity 
showed increased sensitivity to cellular pretreatment with 
IFN-β (175). On the contrary, TGEV nsp14 probably is 
responsible for the induction of IFN-β production through 
interaction with cellular RNA helicase DDX1 (176).
  The C-terminus of nsp14 encodes for the guanosine 
N7-methyltransferase activity (177). When SARS-
CoV or TGEV nsp14 was overexpressed in yeast null 
mutant of mRNA guanine 7-methyltransferase abd1, 
the growth-deficient phenotype was restored (177). The 
nsp14 specifically methylates GTP, dGTP, or the inverted 
guanosine molecule attached to the 5’-end of RNA (178). 
When a point mutation at the MTase domain (D331A) 
was incorporated into SARS-CoV replicon carrying a 
luciferase reporter, the luciferase activity dropped to 10%, 
and the subgenomic RNA accumulation dropped to 19% 
of the wt level (177). The defect in viral transcription and 
gene expression is likely due to the unstable viral RNA 
produced by the virus.

Nsp15: endoribonuclease
  Nsp15 is a uridine-specific endoribonuclease (EndoU) 
that processes RNA in the viral replication/transcription 
complex (RTC) (31). It is a signature molecular marker 
for vertebrate Nidovirales (179, 180), as insect nidoviruses 
and viruses outside the Nidovirales do not encode such 
endoribonuclease (19, 181-183).
  Nsp15 forms a hexamer (46, 48, 184) that depends on 
manganese as a cofactor for its ribonuclease activity 
(185-187). Nsp15 can process both ssRNA and dsRNA, 
but not DNA (185). Blocking the 5’- or the 3’- ends of 
substrate RNAs did not prevent the RNA degradation, 
suggestive of the activity is mainly towards the middle 
(endo) portion of the RNA substrate (185, 188). A mass 
spectrometry analysis of SARS-CoV nsp15 digested 
RNA products revealed that the major RNA cleavage site 
is the 3’ of the uridylate. The 3’ of cytidylate in favored 
sequence contexts can also be the site for cleavage (189). 
The hexamer form of SARS-CoV nsp15 was found to 
be responsible for RNA binding (189). Other studies on 
MHV nsp15 showed a higher binding affinity to RNA and 
similar ribonuclease activity of the monomer form (47).
  Early genetic attempts using mutations of the vital 
amino acids in the MHV nsp15 catalytic pocket found 
that nsp15 deficient caused decreased RNA replication 
and viral growth in cell culture (190). Breakthrough in 
understanding its unique function was made a decade 

later by testing viral replication in mouse macrophages 
and in vivo (24, 191). The nsp15 EndoU-deficient mutant 
MHV stimulated an early induction of cytosolic dsRNA 
during infection, led to robust induction of IFN-I and 
PKR-mediated apoptosis, and exhibited impaired viral 
growth (24, 191). Moreover, the infection of the mutant 
virus was restricted in primary cells in vivo and could not 
efficiently spread (24). Thus the endoribonuclease activity 
of nsp15 promotes digestion of excessive viral dsRNAs 
at the replication sites and mediates viral evasion of host 
dsRNA-mediated innate immunity at the early stage of 
infection (186).

Nsp16: 2′-O-methyltransferase
  Nsp16 encodes 2′-O-methyltransferase, which can 
methylate the RNA cap at ribose 2’-O positions resulting 
in a cap-1 structure (192). The 2’-O-MTase activity was 
predicted for SARS-CoV nsp16 by 3D modeling soon 
after the SARS epidemic in 2003 (192). However, the 
2’-O-MTase activity was first demonstrated for FCoV 
nsp16 (193). On the contrary, SARS-CoV nsp16 along 
is inactive. It requires nsp10 as a cofactor to bind to 
SAM and m7GpppA-RNA substrate (137) and depends 
on nsp10 for its 2’-O-MTase activity (139). The crystal 
structure of SARS-CoV nsp16 posts a non-canonical 
SAM-dependent 2’-O-MTase structure lacking two out of 
seven α-helices, which may explain the requirements of 
nsp10 for its activity (60, 137).
  SARS-CoV or MERS-CoV nsp16 mutants that contain 
mutations on conserved KDKE motif strongly attenuated 
viral infection in vitro and in vivo (34, 194). As common 
strategies among various RNA viruses to counteract 
innate immunity (192), the cap-1 type of modification 
help coronavirus evade the RNA recognition machinery 
and the antiviral responses mediated by IFN-I (34, 194). 
Viruses defective in the 2’-O-MTase activity showed 
increased sensitivity to IFN-I treatment comparing to the 
wt virus (34, 194). Host cytoplasmic RNA sensor Mda5 
was shown to recognize those viral transcripts produced 
by the nsp16 mutant virus, as in the absence of Mda5, 
the replication and virulence of the mutant virus was 
restored (34, 194). 

Nonstructural proteins are useful drug targets
  Phylogenetic studies and serological evidence shows that 
the human-infecting betacoronaviruses, including highly 
pathogenic SARS-CoV, SARS-CoV-2, and MERS-CoV, 
have animal origins (9, 63, 195-197). Bats are identified 
as the natural reservoirs for human coronaviruses (198-
200). Bats usually do not display signs of disease when 
infected with coronaviruses and have evolved an immune 
system that allows virus propagation (201, 202). Due to 
the increasing human activities and global warming that 
result in the changing of bat habitats, the emergency of 
new zoonotic coronaviral diseases are very likely to occur 
(199-201). This consensus demands the development 
of novel anticoronaviral medicines. The nonstructural 
proteins or the viral replication processes of coronaviruses 
have been shown as potential antiviral drug targets (203).
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  During the epidemic of SARS in 2003, structure 
simulation of SARS-CoV nsp5 3CLpro suggested that the 
nsp5 substrate-binding sites are conserved with rhinovirus 
3Cpro and can be targeted with the antirhinoviral drug 
AG7088 (204). Although AG7088 was soon demonstrated 
to be ineffective in inhibiting SARS-CoV replication (205), 
the HIV protease inhibitor lopinavir-ritonavir showed 
broad-spectrum antiviral activity targeting SARS-CoV, 
MERS-CoV 3CLpro, HCoV-229E, and HCoV-NL63 (64, 
206-212). Immediately after the COVID-19 outbreak, 
several clinical studies for the use of protease inhibitors, 
such as lopinavir-ritonavir, darunavir-cobicistat, and 
ASC09F were started (213, 214). Unfortunately, one 
recently finished clinical trial showed that lopinavir-
ritonavir treatment provides no therapeutic benefit to 
hospitalized severe COVID-19 adult patients (215). 
Similar to nsp5 3CLpro, the PLpro domain of nsp3 is also 
a drug target (216-218). Among the PLpro inhibitors, 
disulfiram is clinically available for chronic alcohol 
dependence relief (216).
  The coronaviral nsp12 RdRp serves as an important 
drug target. Nucleotide analogs can directly compete with 
nucleotide substrates of RdRp, resulting in the halt of the 
reaction as well as disruption of the viral replication (147). 
A recent report showed that remdesivir, an adenosine 
analog, can efficiently inhibit viral infection in SARS-
CoV-2 sensitive Huh-7 cell (219). The first SARS-CoV-2 
patient in the United States administered remdesivir 
under the protocol of “compassionate use” and showed 
improved clinical conditions in about 24 hours and finally 
discharged from hospital, suggestive of a possible efficacy 
of remdesivir against coronavirus in this individual case (8). 
The uses of remdesivir and several other RdRp inhibitors 
for the treatment of COVID-19 are currently in clinical 
trials (213, 214).
  Helicase domain of nsp13 also showed promise 
as a potential target. SSYA10-001, a 1,2,4-triazole 
derivative, can block the unwinding activity of nsp13 in 
a non-competitive manner (220), while myricetin and 
scutellarein suppress the ATPase activity of nsp13 (221). 
Furthermore, the adamantane-derived bananins can inhibit 
both ATPase and helicase activity of nsp13 and cause 
decreased viral infection in cell culture (222). However, 
none of these drug candidates went to clinical trials by the 
end of February 2020 (214).

Summary
  Significant progress has been made in the understanding 
of the coronavirus nonstructural proteins, especially after 
the SARS epidemic in 2003. Most of the studies utilized 
cultured cells to investigate coronaviral infection, but the 
transgenic humanized mouse model also played critical 
roles in dissecting viral pathogenesis as well as aiding 
drug discoveries (223-225). These studies of coronaviral 
nonstructural proteins provided in-depth knowledge of 
how the viruses establish their infection and will continue 
to aid the discovery of new drugs effectively against 
coronaviruses.
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