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Misfolded protein aggregation and altered cellular 
pathways in neurodegenerative diseases
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ABSTRACT
Neurodegenerative diseases are estimated by the World Health Organization to be the second leading 
cause of human death by 2050. They actually are a group of chronic neurological disorders leading to 
motor, cognitive and sensory impairments in both human and nonhuman species. Despite different in 
clinical manifestation, prevalence, risk factors, cell types injured and genes hijacked, neurodegenerative 
disorders are usually associated with the misfolding and aggregation of a distinct protein that accumulates 
in diverse cellular locations including the nucleus, cytoplasm, plasma membrane and extracellular 
space. Here we intend to give an overview of the characteristics and features of several pathogenic 
protein aggregates in disease brains, and introduce some general signaling pathways involved in protein 
homeostasis with an emphasis on their puzzling roles under the degenerative conditions.
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1. Introduction
  Neurodegenerative diseases (NDs) are chronic 
neurological disorders including Alzheimer’s disease 
(AD), Parkinson’s disease (PD), Huntington’s disease 
(HD), Creutzfeldt-Jakob disease (CJD), Friedreich’s 
ataxia, spinal muscular atrophy (SMA) and amyotrophic 
lateral sclerosis (ALS) in humans, as well as scrapie in 
sheep and goats, bovine spongiform encephalopathy (BSE) 
in cattle and several others in nonhuman species (1-7). 
Although these diseases are initiated predominantly by 
aggregations of different misfolded proteins, they all result 
in gradual and progressive loss of nerve cells in the brain, 
eventually leading to irreversible disability in learning 
and memory due to impaired motor, sensory and cognitive 
systems. Pathologic development of neurodegenerative 
disorders usually is slow but fatal, requiring the 
accumulation of pathogenic molecules to exceed some 

critical threshold before neurological dysfunction occurs. 
Many NDs therefore are not evolutionarily selected and 
associated with the aging process, which provides time 
to allow the neurogenic symptoms to manifest (8). It was 
estimated by the World Health Organization that NDs 
should replace cancer, becoming the second leading cause 
of human death by 2050, when senior people aged 65 and 
above reach 17% of the population and over 152 million 
people are expected to have these dreaded maladies in 
their later life (9). The numbers underline the urgent need 
to develop informative molecular diagnostics and effective 
medical treatment for the public health problem.
  While work in the field of neurodegeneration has been 
sparked by the prevalence of the world-wide epidemic 
along with increased life expectancy, yet we are only 
beginning to understand the underlying genetic and 
cellular mechanisms, and so far limited steps have been 
made along the path to promising therapeutics for these 
age-dependent illnesses. In light of this, the goal of this 
review is to provide an overview of protein misfolding 
and aggregation in degenerative brain disorders, and focus 
on debated knowledge regarding the cellular pathways 
altered in relevance to protein homeostasis under the 
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pathological condition. We hope this review will be 
helpful to inspire new ideas and new discoveries on NDs.

2 Misfolded pathogenic protein aggregates in NDs
  Although distinct in clinical manifestation, prevalence, 
regions of brain targeted and cell types injured, 
neurodegenerative disorders, when considered at the 
molecular level, share many common features, among 
which the progressive accumulation of misfolded 
pathogenic protein aggregates is believed to be the key 
event (Table 1). The protein aggregates mentioned here 
can be small and soluble oligomers, large and amorphous 
assemblies, or highly ordered fibrillary amyloids. A 
growing body of evidence indicates that these protein 
agents, such as amyloid β-protein, tau and α-synuclein, 
when in native states do not exhibit obvious similarities, 
and in origin can either come from endogenous gene 
products, or be seeded by an external infectious process, 
referred to as prion infection.

2.1 Amyloid β-protein (Aβ)
  Aggregation of misfolded amyloid β-protein (Aβ), a 
secreted peptide derived from an internal domain within 
the amyloid β-protein precursor (βAPP), is an invariant 
hallmark of all forms of AD (38, 39). It is well known that 
the βAPP protein is normally synthesized, secreted and 
then efficiently degraded when the internal domain for 
Aβ is cleaved by α-secretase, a protease, to prevent Aβ 
formation (40, 41). However, βAPP in normal brain can 
also undergo cleavage in the endoplasmic reticulum (ER)-
Golgi secretory pathway by β- and γ-secretase instead 
of α-secretase to release the amyloidogenic fragment, 
characterized as a 38- to 48-residue peptide (42-45). Among 
these toxic peptides, Aβ42 is the principal component 
of amyloid deposits in AD patients as it forms insoluble 
aggregates much faster than others (46, 47).
  It is recognized that the majority of AD cases are 
sporadic, and only 10% to 20% occur in families (48). 
Nevertheless, in vitro and in vivo studies have showed 
that the underlying genetic factors, whether sporadic or 
inherited, are aiming to accelerate the accumulation of Aβ 
neurotoxicity at multiple levels. The first familial mutation 
discovered was in the βAPP gene, near the putative site 
for γ-secretase cleavage, modifying γ-secretase activity 
and thereby enhancing only the production of Aβ42 (49-51). 
After that, more inherited βAPP variants to facilitate 
Aβ procession were uncovered (52-54). Subsequent 
genetic analysis by a large number of AD families also 
identified mutations in presenilin 1 and 2 genes encoding 
the catalytic subunits of γ-secretase to increase Aβ42 
level (55-57). In contrast, apolipoprotein E, a cholesterol 
transporter binding to Aβ, is the only well-established 
genetic factor associated with sporadic AD through its 
function to influence the clearance of Aβ in extracellular 
space (58-60).

2.2 Tau and tauopathies
  Tauopathies are a diverse group of neurodegenerations 
characterized by neurofibrillary tangles (NFTs) composed 

of insoluble and hyper-phosphorylated tau proteins in 
neurons and glia (61). The protein tau, however, naturally 
is highly soluble and functions as a microtubule (MT)-
binding protein to stabilize and promote the assembly of 
MTs (62). The binding between tau and MT is negatively 
regulated by the phosphorylation of tau, which is a feature 
of its pathogenic form (63). In adult human brains, tau 
is encoded by the MAPT gene to generate six isoforms, 
containing either three or four MT-binding repeats via 
alternative mRNA splicing (64). It has been proved in 
vitro that the MT-binding repeats are both necessary 
and sufficient for tau to acquire highly ordered β-sheet 
structures when it assembles into insoluble NFTs (65). 
Hence it has been shown that all six isoforms are present 
and misfolded in disease brains to form a heterogeneous 
mixture of tau isoforms adopting different conformations, 
which is probably responsible for the clinical and 
pathological diversity of tauopathies (66).
  As a MT-binding protein, tau is normally considered to 
function inside a cell, but tau aggregates, likely released 
from dying or dead neurons, are also detected in the 
extracellular space where it can be taken up through 
endocytosis by neighboring cells (34). Once internalized, 
the small amount of aggregated tau then serves as a seed 
and transmits a misfolded state specifically to the native 
tau in healthy cells in a manner similar to prion, which 
will be discussed later (67). In this way, the disease 
properties spread from cell to cell along the defined 
neuroanatomical pathways, causing cellular dysfunctions 
due to both the physical occupancy of the large tau 
deposition and the loss of the MT-binding function of tau. 
Especially the latter, not only disrupts the stabilization of 
MT cytoskeleton, which is important for the generation 
and maintenance of neurites, but also suppresses the 
kinesin-dependent transport of mitochondria, peroxisomes 
and Golgi-derived vesicles in neurons (68). Shortage of 
mitochondria and peroxisomes subsequently causes loss 
of energy production and accumulation of reactive oxygen 
species, leading to degeneration. In particular, suppression 
of Golgi-mediated secretion would retain vesicles carrying 
βAPP in the cell body, allowing an enhanced production 
of toxic Aβ peptides (69, 70).

2.3 α-synuclein (α-syn)
  α-synuclein (α-syn) is a phospholipid-binding protein 
with a chaperone activity to facilitate presynaptic SNARE-
complex assembly and thereby regulate neurotransmitter 
release in the presynaptic terminals (71). In the presence 
of negatively charged lipids, normal α-syn folds into 
amphipathic α-helices through its N-terminal repeat 
region. Missense mutations located in the N-terminal 
repeats often lead to the conversion of α-helices into 
β-sheet-rich structures, which ultimately coalesce into 
characteristic assemblies called Lewy bodies and Lewy 
neurites in maladies such as PD and Lewy body disease, 
as well as into glial cytoplasmic inclusions in multiple 
system atrophy (20, 72-74).
  As in the case of tau protein, the neuropathological 
process of α-syn lesions is also thought to progress via a
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seed-induced conversion among cells along anatomically 
connected structures in the brain, albeit how pathological 
α-syn exits cells remains elusive (75). Furthermore, 
compelling evidence has suggested that abnormal α-syn 
is frequently co-depositing with other pathogenic proteins 
like Aβ and tau, as hybrid polymers initiated by cross-
seeding between different types of protein aggregates have 
been extensively reported in various NDs (76, 77). As a 
result, the pathological overlap between disease agents 
in the same patient raises the question of which one is 
the predominant cause and complicates the diagnosis and 
treatment for NDs.

2.4 Prion diseases
  Prion diseases, such as CJD and Kuru in humans, 
as well as scrapie and BSE in animals, can arise 
sporadically, be inherited, or be acquired by infection 
under natural conditions. The term “prion”, denoting a 
small proteinaceous infectious particle, was proposed 
by Stanley Prusiner in 1982 first to describe the scrapie 
agent that causes a degenerative disorder of the central 
nervous system in sheep and goats (7). The definition now 
has been broadened to emphasize the requirement of an 
unconventional and virus-like protein for infection, which 
is able to undergo self-replication, similar to nucleic acid 
molecules, but resistant to procedures with specificity 
for attacking nucleic acids (78). Hence, it is now widely 
accepted that the pathogen of prion diseases might not 
contain any DNA or RNA, unless more sensitive probes 
are developed.

  Although prions are thought to exist in multiple strains 
composed of different polymeric forms of misfolded 
proteins to cause phenotypic heterogeneity in various 
brain disorders, they all arise when normal cellular 
proteins (PrP-Cellular, or PrPC) misfold and transform 
into pathogenic prion molecules (conventionally referred 
to as PrP-Scrapie, or PrPSc), which are characterized by 
a high content of β-sheets. Once established in neurons, 
the disease agent PrPSc then indefinitely convert more 
PrPC into the prion form. Mutations in the gene encoding 
PrP have been identified prone to develop infectivity 
spontaneously (79, 80). This perhaps hints a genetic origin 
of prion diseases, but how pathological transformation 
occurs when PrPC binds to PrPSc is largely unknown. It is 
predicated that the efficiency of prion conversion could 
depend on the homology of the primary and secondary 
structures between PrPC and PrPSc, and the architecture 
of the PrPC-PrPSc complex (81). According to studies 
on different prion strains, it is plausible to suspect 
that environmental factors may also contribute to the 
conversion of PrPC to PrPSc as non-host factors, such as 
surface binding and weathering, which are able to alter 
strain emergence in vitro in a population of prions (82, 83).
  Toxic prions have an enhanced tendency to aggregate and 
form oligomers or amyloid-like fibrils, disrupting normal 
cellular functions and eventually spreading within the 
nervous system mainly through the neural connectome (84). 
Besides cell-to-cell transmission, person-to-person and 
even cross-species disseminations are suggested by 
cumulative evidence as cases were reported that people

Misfolded Protein Gene Subcellular locations Diseases References

Amyloid β βAPP ER-Golgi, autophagosome, mitochondria, ES AD, PD (10-13)

Androgen receptor AR cytosol SBMA (14)

Atrophin 1 ATN1 nucleus, cytosol DRPLA (15)

Ataxin 1 SCA1 nucleus SCA (16)

α-Synuclein SNCA nucleus, cytosol, ER, mitochondria, PM, ES DLB, PD (2, 17-20)

Fused in sarcoma FUS nucleus, cytosol ALS, FTD (21)

Huntingtin HTT nucleus, cytosol HD (22)

Prion protein PRNP nucleus, cytosol CJD, Kuru, BSE, CWD, Scrapie (7, 23-26)

Rhodopsin RHO ER, PM ADRP (27)

Superoxide dismutase 1 SOD1 nucleus, cytosol, ER, mitochondria ALS (28)

Tau MAPT nucleus, cytosol, ER, Golgi, lysosome, PM, ES AD, FTD, Pick's disease (29-35)

TAR DNA-Binding Protein 43 TARDBP nucleus, cytosol ALS, FTD (21, 36, 37)

Table 1. Misfolding and aggregation of pathogenic proteins identified from NDs. 

AD: Alzheimer disease; ADRP: Autosomal dominant retinitis pigmentosa; ALS: Amyotrophic lateral sclerosis; βAPP: amyloid β-protein 
precursor; BSE: Bovine spongiform encephalopathy; CJD: Creutzfeldt-Jakob disease; CWD: Chronic wasting disease; DLB: Dementia 
with Lewy bodies; DRPLA: Dentatorubral-pallidoluysian atrophy; ER: endoplasmic reticulum; ES: extracellular space; FTD: Fronto-
temporal dementia; HD: Huntington's disease; MAPT: microtubule-associated protein tau; PD: Parkinson’s disease; PM: plasma 
membrane; SBMA: Spinal and bulbar muscular atrophy; SCA: Spinocerebellar ataxia; SNCA: Synuclein Alpha.
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with CJD, resulting from consumption of beef prepared 
from mad cows, transmitted CJD prions to recipients of 
blood transfusions (23, 85). However, the molecular basis 
of the intra-species and the inter-species transmissibility 
of prions remains poorly understood.

2.5 Prion v.s. non-prion
  Even though lots of common biological features are 
shared, we insist to classify prion and non-prion (Aβ, 
tau, α-syn and others) into two groups in this review 
based on the transmissibility of associated diseases. 
After all, there is no clinical evidence for the person-
to-person transmission of non-prion NDs under normal 
circumstances. Nevertheless, studies with Aβ, tau and 
α-syn have clearly shown that experimental inoculation 
with brain homogenates from patients or mouse models 
of these illnesses could lead to disease pathology in 
recipient animals in laboratory (86-88). As such, it is 
highly possible that the definition of prion will be further 
widened when bioassays are well developed so that the 
transmissibility of non-prion proteins could be fully 
appreciated. Yet we sincerely hope the infectious property 
of non-prion diseases is not true as it should challenge 
the therapeutic strategies and require implementing 
more precautions in taking care of ND patients. Also, 
it is serious that to date there are no effective therapies 

available for prion diseases. Approaches have been 
explored including small compounds, antibiotics, 
vaccination, antibodies, peptide aptamer and nucleic 
acid-based agents, but none have prospects for clinical 
advancement, owing to either inefficacy against prion 
after onset of symptoms or inadequate brain distribution. 
It hereby should be pointed out that a breakthrough from 
clinical trials can only be achieved with the development of 
a screening test for the early diagnosis of prion diseases (89).

3 Alteration of signaling pathways in cells of NDs
  A key question always concerns how the accumulation 
of distinct disease proteins contributes to the degenerative 
process .  The mechanisms under ly ing d i fferent 
neurological disorders probably are not exactly the same, 
but dysregulation of protein homeostasis linked with 
abnormal aggregates is an almost universal hallmark 
of ND pathogenesis. In patients, activities of pathways 
involved in protein synthesis, protein folding, protein 
degradation and energy supply for proteostasis are altered 
in cells of the nervous system (Figure 1). However, it is 
still not completely clear whether these changes play a 
protective or a toxic role in cell survival.

3.1 ER stress and unfolded protein response
  The ER plays a central role in protein quality control to 

Figure 1. Schematic representation of cellular pathways involved in NDs. Arrows indicate activation, whereas bar-ended lines 
indicate inhibitory interactions.
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maintain cellular proteostasis. Membrane and secreted 
proteins are synthesized, folded and processed in the 
ER before displayed on the cell surface, or released 
extracellularly. Misfolded proteins are eliminated via the 
ER-associated degradation (ERAD) pathways, either the 
ubiquitin-proteasome system (UPS) or autophagy (also 
termed as ERAD-I and ERAD-II respectively in some 
publications), to ensure that only properly folded proteins 
exit the ER (90). When substrates exhaust the regulatory 
capacity of ERAD, misfolded proteins accumulate and 
lead to a stress response called the unfolded protein 
response (UPR) (91). The UPR is mediated through three 
principal branches including endoribonuclease IRE1, 
transcription factor ATF6, and eIF2α kinases PERK 
and GCN2. The three signal transducers then regulate the 
expression of tremendous genes to adapt to the stress or to 
induce cell apoptosis when the stress cannot be mitigated (92).
  In most organisms, ER stress-associated UPR is 
exacerbated during the aging process (93, 94). The 
capacity of the ER to prevent aberrant protein dramatically 
decreases in healthy aging, while the burden of unfolded 
proteins increases instead. In this scenario, the UPR 
is known to activate its adaptive programs to alleviate 
the accumulation of misfolded proteins via halting 
protein translation, stimulating destruction of abnormal 
proteins by ERAD, and increasing the production of ER 
chaperons relevant to protein folding. Upon activation, 
IRE1 is usually acting as an RNase and mediating the 
removal of an intron from the XBP1 mRNA to allow the 
expression of a functional XBP1 transcription factor (95). 
The activity of XBP1 is linked to various pro-survival 
events including transcription of genes involved in protein 
folding and ERAD (96). ER stress also directly modulates 
gene expression to promote cytoprotection through the 
transcription factor ATF6 after it is translocated from the 
ER to Golgi, where ATF6 is activated by a proteolytic 
cleavage (97). In addition, the protein translation initiation 
factor eIF2α is phosphorylated upon stress to globally 
attenuate the cap-dependent mRNA translation and 
prevent overload of newly synthesized proteins into the 
already stressed ER lumen (98). In contrast, under eIF2α 
phosphorylation, translation of a subset of mRNAs, 
such as transcription factor ATF4 and genes targeted by 
XBP1 and ATF6, is enhanced to restore homeostasis via 
upstream open reading frame (99). Phosphorylation of 
eIF2α in response to ER stress was initially found to be 
controlled by auto-phosphorylation of the ER-resident 
PERK kinase, and it is recognized now to be partially 
contributed by GCN2 as well (100, 101). Although it 
remains unclear how the cytoplasmic GCN2 kinase senses 
ER stress, the redundant regulation of the two eIF2α 
kinases was suggested to occur in a tissue dependent 
manner (102).
  ER stress-triggered UPR has been implicated broadly in 
neurodegeneration. Previous work in a Drosophila model 
of PD showed that accumulation of wild type or missense 
mutant α-syn led to the hyper-activation of IRE1, and 
ectopic overexpression of IRE1 was sufficient to induce 
neuron death, progressive locomotor impairment and 

shorter lifespan of flies (103). In brain tissues from both 
AD and PD patients, a clear increase of PERK and eIF2α 
phosphorylation levels was also observed when compared 
to normal elderly controls by antibody staining (104, 105). 
Interestingly, the same mammalian PD research and others 
demonstrated that oral administration of a PERK inhibitor 
had strong neuroprotective effects on many ND models, 
implicating the potential use of eIF2α phosphorylation 
as therapeutic targets, even though PERK inhibitor itself 
was found to have strong undesired side effects (105-107). 
Finally, ATF6 overexpression has been reported recently 
to reduce misfolded proteins and restore memory in 
disease animals albeit less is known about the involvement 
of ATF6 in neurodegenerative disorders (108).
  Taken together, all these studies suggest a complicated 
scenario where the three parallel arms of the UPR, in 
comparison to its protective function, turn out to have 
contrasting and even opposite effects, as sustained ER 
stress, depending on the disease context, shifts the UPR 
signaling towards induction of apoptosis. Theoretically, 
the apoptotic effects are tuned through different 
downstream networks controlled by the same batch of 
genes, such as the ASK1 (Apoptotic-Signaling Kinase-
1)-JNK pathway mediated by IRE1, pro-apoptotic 
transcriptional factor CHOP activated by ATF6 and 
ATF4, as well as apoptosis-related transcription factor 
FoxO3 (also in section 3.5) phosphorylated by PERK and 
GCN2 (102, 109-111). However, when and how the UPR 
converts its dual effect under ND conditions of chronic 
and irreversible ER stress is still incompletely understood.

3.2 Ubiquitin-proteasome system
  Coordinated activities of the UPS and autophagy, the 
two major protein clearance pathways, can be central to 
prevent the aggregation and toxicity of misfolded-prone 
proteins, which manifest in a number of neurological 
disorders. The UPS is a highly selective and tightly 
regulated pathway for destruction of soluble, unneeded 
or potentially toxic polypeptides in most cellular 
compartments (112). Degradation of a protein via the 
UPS involves two discrete and consecutive steps named 
conjugation and degradation: the substrate protein is 
tagged by covalent attachment of multiple ubiquitin 
molecules to synthesize a proteolytic signal during 
the conjugation step; thereafter, the polyubiquitinated 
substrate is chewed up by the 26S proteasome complex 
with release of free and reusable ubiquitin, which is the 
degradation step (113).
  Accumulation of ubiquitinated proteins has been reported 
in NDs, and an age- and disease-related decline of UPS 
activity has also been reported (114-116). In some cases, 
malfunctions of the UPS have emerged as a primary cause 
in the pathogenesis of neurodegenerations. In the past two 
decades, for instance, a direct link between an aberration 
in the ubiquitin system and the resulting pathology has 
been studied in PD. 
  The gene Parkin (or PARK2) codes for a ubiquitin 
ligase that ubiquitinates misfolded proteins targeted for 
proteasome-dependent degradation (117). Various deletion 
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and point mutations were found in this gene leading to 
young-onset PD (118, 119). Since then, a broad array 
of candidate substrates for Parkin has been identified 
including α-syn and its interacting protein synphilin-1, 
which are responsible for Lewy-body formation (120, 
121). It should be noticed that by recent findings Parkin 
also ubiquitinates substrates on the outer membrane of 
mitochondria and through the UPS participates in the 
elimination of damaged mitochondria, which contributes 
to neuronal death as well when Parkin is impaired (122).
  Besides, aberrations in the UPS have been implicated 
as a secondary consequence by disease-associated 
aggregations in many other cases. Cells engineered to 
produce or infected with unrelated protein aggregates 
by different research groups were shown to have the 
UPS stalled and destroyed (123, 124). Bennett et al., 
2005 further found that production of protein aggregates 
specifically targeted to either the nucleus or cytosol 
led to global impairment of the UPS function in both 
compartments (125). Although the molecular mechanisms 
are undetermined, the observation of severe UPS damage 
in cellular compartments lacking detectable disease 
agent suggests UPS disruption could be an indirect 
phenomenon, arguing the toxic gain-of-function mediated 
by pathogenic protein aggregates in NDs.

3.3 Autophagy
  Autophagy (or macro-autophagy) is a bulk clearance 
pathway whereby misfolded and proteasome-resistant 
proteins, macromolecules, and damaged or excess 
organelles are packaged into double-membraned vacuoles 
called autophagosomes, and then transported along MTs 
to the lysosome for degradation (126). Autophagy is 
normally regulated through a series of protein-coding 
genes defined as autophagy-related genes (ATGs) to 
constitutively function at a low level (127). Although 
autophagy in many organisms is induced primarily in 
adaption to nutrient deprivation, a tight relationship 
between autophagy and ER homeostasis is confirmed, 
given that many terms like “ERAD-II”, “ER-quality 
control autophagy (ERQC)”, “ER-autophagy (ER-
phagy)” and “ER-to-lysosome-associated degradation 
(ERLAD)” have been proposed to delineate variant 
ER pathways that intersect with the entire or selective 
autophagy machinery (90, 128-130).
  However, the pathological connection between 
autophagy and neurodegeneration is not simply restricted 
to the ER, and is much more complex. Experimental result 
has supported a role for dysfunctional autophagy as a 
potential causative factor of NDs, since mice deficient for 
Atg5 specifically in neural cells develop progressive motor 
and behavior deficits, accompanied by the accumulation 
of cytoplasmic inclusion bodies in neurons (131). The 
absence of Atg5 suggests the basal activity of autophagy 
is already essential for preventing the accumulation of 
abnormal proteins in the nervous system even without 
expressing any disease-linked mutant proteins. Not 
surprising that, in the presence of toxic protein aggregates, 
increased induction of autophagy is relatively frequent, 

and substantial benefits to ameliorate neuropathology 
are often observed with autophagy-inducing agents in a 
majority of transgenic mouse models of NDs (132, 133).
  Yet there are a few exceptions that stimulation of 
autophagy would become counter-productive when 
specific stages of autophagy for clearance have been 
compromised by disease proteins. For example, certain tau 
isoform has been shown to bind the lysosomal membrane 
rather than enter the lysosome for degradation (35). In 
this context, autophagy induction seems to deliver more 
tau fragments to the lysosome and promote the formation 
of tau oligomers at the surface of these organelles. Also 
notably, biochemical experiment implies that Aβ is 
generated not only in the ER and Golgi compartments but 
also in autophagosomes, as purified autophagic vacuoles 
contain both βAPP and highly activated γ-secretase, the 
protease cleaving βAPP to Aβ (11). Moreover, autophagy 
is illustrated to influence Aβ secretion in vivo in βAPP 
transgenic mice, where autophagy deficiency reduces 
extracellular Aβ plaque burden and leads to aberrant 
intra-neuronal Aβ accumulation, contrary to what may be 
expected if autophagy only cleaned Aβ (134).
  Overall, autophagy responses are generally viewed 
as neuroprotective, and stimulating the induction of 
autophagy has therapeutically received great attention. 
Although consequences of pharmacological modulation 
of autophagy are still beyond our current knowledge, in 
specific neurodegenerative disorders where autophagic 
clearance mechanisms are well-understood, further 
promotion of autophagy might be the best interventional 
strategy so far.

3.4 Target of rapamycin (TOR)
  The evolutionarily conserved protein kinase TOR has 
garnered significant attention for its role in neurological 
diseases. Biochemical purification of TOR-associated 
proteins has revealed that TOR is present in two 
complexes, TORC1 and TORC2, with distinct sets of 
binding partners (135). The two complexes coordinately 
regulate fundamental cellular behaviors, such as protein 
synthesis, cytoskeletal organization, cell metabolism, cell 
proliferation and survival. Compared to TORC1, less is 
known about TORC2, part of whose function is believed 
to impact TORC1 through positive and negative feedback 
mechanisms (136). As such, we will only review the 
linkage between TORC1 and NDs in this section.
  TORC1 and its downstream pathways have been 
intensively shown to be al tered in a  variety of 
neurodegenerations, but the data appear to be extremely 
conflicting. First of all, TORC1 is a negative regulator 
of autophagy in response to growth factors, amino acids 
and cellular energy (137, 138). When TORC1 activity 
is high, Atg13 undergoes TOR-relied phosphorylation, 
which blocks autophagosome formation (139). In this 
circumstance, beneficial effects of removing pathogenic 
proteins were obtained when using the TOR inhibitor, 
rapamycin, to induce autophagy in ND models (140). In 
the case of tauopathies, rapamycin also suppresses TOR-
mediated phosphorylation of S6K (ribosomal protein 
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S6 kinase), and in turn inhibits S6K-catalyzed hyper-
phosphorylation of tau, which may foster the conversion 
of tau into its pathogenic form (141). On the other hand, 
loss of TORC1 signaling has been implied to impair 
synaptic plasticity and memory storage in animal models 
of AD, which can be restored through upregulation of 
TORC1 activity (142). This is most likely because of 
the function of TORC1 to modulate protein synthesis 
required for memory consolidation, given that altered 
translational control has a vital role in memory and 
cognitive decline (143). Two well-characterized substrates 
of TORC1 are involved in the initiation of cap-dependent 
translation of mRNA: 4E-BP (eIF4E-binding protein) 
and S6K. Phosphorylation of 4E-BP by TORC1 leads 
to its dissociation from eIF4E and allows the assembly 
of the translation preinitiation complex (144). S6K, as 
mentioned earlier, actually is best known for its ability to 
phosphorylate 40S ribosomal protein S6 and eIF4B, which 
enhances the association of eIF4B with the translation 
preinitiation complex (145). Additionally, TORC1 is also 
a key mediator of ribosome biogenesis, essential for cell 
growth and survival (146). Taken together, it is reasonable 
as well that a decrease in TORC1 activity appears to 
be harmful and correlate with the progression of ND in 
clinical patients.
  How to explain the discrepancy of TORC1 in 
degenerative disorders? To some extent, there is 
a chicken-and-egg scenario here: it is difficult to 
determine whether alteration of TORC1 signaling 
emerges first, then contributing to neurodegeneration, 
or whether activity of TORC1 is adjusted by the cell 
as a secondary consequence, struggling to survive in 
response to an existing pathological condition. The two 
models apparently will lead to opposite outcomes, and 
current information seems to support both in different 
physiological contexts of NDs. Alternatively, as speculated 
from “Norambuena A, et al. 2018” and “Polanco JC and 
Götz J. 2018”, it is where TORC1 is functioning that 
matters, rather than whether it is up or down (147, 148). 
In fact, TORC1 has been detected in multiple subcellular 
compartments, not only in the nucleus, cytoplasm and 
Golgi, but also located on vacuoles/lysosomes and plasma 
membrane (149, 150). How the subcellular distribution 
of TORC1 affects specific cellular responses remains an 
open question. However, Norambuena A, et al. 2018 found 
that in the early stages of AD, oligomeric Aβ would abrogate 
lysosome-localized TORC1 function by an activation of 
TORC1 at the plasma membrane, where tau is phosphorylated 
in a TORC1-dependent manner (147). In light of this, 
subcellular localization may be an important principle 
used in AD to enact precise spatial and temporal control 
of TORC1. It will be intriguing to further investigate 
whether it also holds true for other degenerative diseases.

3.5 Insulin/insulin-like growth factor (IGF) signaling
  The mammalian brain has a high demand for energy. 
Despite representing only 2% of the total body mass, the 
brain consumes approximately 25% of the glucose and 
oxygen used by the body (151). As a matter of fact, nearly 

all neurodegenerations have been corroborated to exhibit 
a crucial metabolic dysfunction that includes altered 
glucose uptake/utilization and disrupted mitochondrial 
activity. The insulin/IGF signaling responsive to systemic 
hormonal cues is the main regulatory network controlling 
energy metabolism and longevity in multicellular 
animals (152, 153). Insulin and IGFs, closely related in 
terms of biological activity, are primarily secreted from 
different organs, yet both are also locally synthesized 
in the brain (154). Insulin resistance takes place when 
cellular responsiveness to insulin/IGFs is compromised, 
leading to a disturbance in glucose metabolism and 
energy balance. Strong evidence has underscored that 
type 2 diabetes and midlife obesity associated with insulin 
resistance are risk factors for development of dementia, 
PD, AD and HD (155-158).
  However, contradiction appears in literatures when 
this comes to the level of molecular and cell biology. 
While some studies reported reduced expression of 
insulin, IGFs and their receptors in brains of AD and PD 
by quantitative RT-PCR, more tried to prove elevated 
insulin/IGFs in the serum and cerebrospinal fluid of 
patients with neurological diseases, including AD 
and PD (159-162). What is more controversial is that 
positive effects have been observed either by decreasing 
insulin/IGF signaling or by administration of agonists 
of insulin and IGF-1 in preclinical models (163, 164). 
Interestingly, an in vitro assay has showed that Aβ in AD 
is a direct competitive inhibitor on insulin binding to 
its receptor, indicating insulin resistance perhaps is not 
simply resulting from the changed amount of pathway 
components (165). Alternatively, the inconsistency might 
come from the time point chosen for investigation during 
the whole disease course. As indicated by a survey based 
on 3,139 participants for up to 10 years in Rotterdam 
of Netherlands, the interconnection between insulin 
metabolism and the clinical manifestation of ND does 
exist but seems not constant over time (166).
  In mammals, both insulin and insulin-like growth factors 
(IGFs) activate the phosphatidylinositol 3-kinase (PI3K)/
AKT pathway through their respective receptors. The 
protein kinase AKT is recruited to the plasma membrane 
via phosphatidylinositol-triphosphate (PIP3), which 
is generated through phosphorylation of PI-4,5-P2 by 
PI3K. Membrane-recruited AKT then is activated 
and phosphorylated successively by PDK1 and by 
TORC2 (153).  By monitoring the level  of  AKT 
phosphorylation, AKT activity has been implied to 
be important for neuronal survival and usually is low 
when cell is insulin resistant (167). Additionally, it has 
been shown that AKT is able to negatively interact with 
several pathogenic proteins via different mechanisms, 
complicating the regulation of AKT in NDs (168). 
Anyway, a chicken-and-egg analogy could also be used to 
summarize the interplay between neurodegenerations and 
AKT, similar to the situations with TORC1.
  AKT has a couple of downstream effectors, including 
TORC1 and  FoxOs,  the  Forkhead  box  c lass  O 
transcription factors. Through AKT, TORC1 integrates  



LI, et al.

 https://doi.org/10.37175/stemedicine.v1i4.63 8

STEMedicine 1(4).e63. OCT 2020.

information about growth factor signals and nutritional 
status to adjust cellular proteostasis in conditions such 
as NDs, which has been discussed in the previous 
section. In addition to TORC1, AKT also mediates 
the phosphorylation of FoxO and creates binding sites 
for 14-3-3 proteins, which promotes the retention of 
FoxO in the cytoplasm, thereby lowering its activity in 
the nucleus (169). The evolutionarily conserved FoxO 
transcription factors are well-known to modulate the 
expression of genes involved in cell survival, stress 
response, metabolism and longevity (170). Mammals 
have four FoxO genes, FoxO1, 3, 4 and 6, which are 
expressed in the nervous system at different levels with 
high similarity in their function and regulation (171, 172). 
The expression of FoxO overall is increasing progressively 
in aging human and mouse brains. In mice, nervous system 
specific FoxO1/3/4 loss-of-function accelerates aging-
related degeneration followed by motor dysfunction (173). 
By contrast, overexpression of a constitutively active 
FoxO3 has pro-apoptotic effects leading to neuronal 
loss, suggesting that fine-tuning FoxO level is of some 
importance to neurons. Intriguingly, inhibition of 
FoxO3 by expressing a dominant negative competitor 
is absolutely protective when a pathogenic α-syn is co-
expressed to induce a disorder condition, highlighting 
FoxO as a potential target for ameliorating the cytotoxicity 
of misfolded pathogenic proteins of NDs (174).

4 Conclusions
  Unlike other cells in an organism, mature neurons cannot 
divide and usually have large expanses of dendritic and 
axonal cytoplasm. They consequently face particular 
hurdles in preventing cellular waste and misfolded 
proteins from accumulating over a lifetime without 
the aid of cell division to dilute these burdens. Young 
neurons achieve this task by efficient stress response and 
clearing systems supported by robust cellular signaling 
transductions. In comparison, the stereotypic neuronal 
connections in the elderly allow transformation and 
accumulation of specific proteins, such as Aβ, tau, α-syn 
and prion, easily within the nervous system. In respect 
to this, aged brain quite often is the organ affected most 
severely under conditions of NDs with altered activities 
of pathways in proteostasis (Figure 1). Although it is 
still uncertain whether the abnormal pathway activities 
implicate a primary cause or secondary consequence, 
the current chicken-and-egg debates concerning this 
issue, as outlined above, definitely will provide in-depth 
understandings of NDs, as well as a fruitful source of 
knowledge for therapeutics to treat these brain symptoms 
in the future.
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