The effects of superparamagnetic iron oxide nanoparticle exposure on gene expression patterns in the neural stem cells under magnetic field

  • Dan Li School of Biology, Food and Environment, Hefei University, Hefei, China
  • Ming-Liang Tang Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Medical College, Soochow University, Suzhou, China
Keywords: SPIOs, stem cells, genes, SMF

Abstract

Background: Due to the excellent reliable traceability and superparamagnetic properties, superparamagnetic iron oxide nanoparticles (SPIOs) are widely used for the applications in the field of biomedicine, including tissue engineering and regenerative medicine. However, the regulation of SPIOs on the gene expressions in the stem cells is not clear.

Methods: In this study, by RNA-Seq analysis, we analyzed the gene expression pattern in the neural stem cells (NSCs) treated with SPIOs in the presence or absence of static magnetic field (SMF).

Results: It was found that SPIOs with SMF regulated more gene expression in NSCs, while most of these genes have been previously reported to play a crucial role in NSCs fate decision.

Conclusions: Our findings reveal the ability of SPIOs and SMF in the regulation of gene expression in NSCs, which may provide an experimental basis for its applications.

Downloads

Download data is not yet available.

References

Hawkett BS. Monodispersed polymer encapsulated superparamagnetic iron oxide nanoparticles for cell labeling. Polymer. 2016; 106(5): 238–248.

Andreu I, Natividad E, Solozabal L, Roubeau O. Nano-objects for addressing the control of nanoparticle arrangement and performance in magnetic hyperthermia. ACS Nano. 2015; 9(2): 1408–19. doi: 10.1021/nn505781f

Mashhadi Malekzadeh A, Ramazani A, Tabatabaei Rezaei SJ, Niknejad H. Design and construction of multifunctional hyperbranched polymers coated magnetite nanoparticles for both targeting magnetic resonance imaging and cancer therapy. J Colloid Interface Sci. 2017; 490: 64–73. doi: 10.1016/j.jcis.2016.11.014

Wei H, Hu Y, Wang J, Gao X, Qian X, Tang M. Superparamagnetic iron oxide nanoparticles: cytotoxicity, metabolism, and cellular behavior in biomedicine applications. Int J Nanomed 2021; 16: 6097–113. doi: 10.2147/IJN.S321984

Huang DM, Hsiao JK, Chen YC, Chien LY, Yao M, Chen YK, et al. The promotion of human mesenchymal stem cell proliferation by superparamagnetic iron oxide nanoparticles. Biomaterials 2009; 30(22): 3645–51. doi: 10.1016/j.biomaterials.2009.03.032

Wang QW, Chen B, Cao M, Sun JF, Wu H, Zhao P, et al. Response of MAPK pathway to iron oxide nanoparticles in vitro treatment promotes osteogenic differentiation of hBMSCs. Biomaterials. 2016; 86: 11–20. doi: 10.1016/j.biomaterials.2016.02.004

Xiao HT, Wang L, Yu B. Superparamagnetic iron oxide promotes osteogenic differentiation of rat adipose-derived stem cells. Int J Clin Exp Med. 2015; 8(1): 698–705. doi: 10.1096/fasebj.13.1.95

Fanelli C, Coppola S, Barone R, Colussi C, Gualandi G, Volpe P, et al. Magnetic fields increase cell survival by inhibiting apoptosis via modulation of Ca2+ influx. FASEB J 1999; 13(1): 95–102. doi: 10.1096/fasebj.13.1.95

Kang KS, Hong JM, Kang JA, Rhie JW, Jeong YH, Cho DW. Regulation of osteogenic differentiation of human adipose-derived stem cells by controlling electromagnetic field conditions. Exp Mol Med. 2013; 45: e6. doi: 10.1038/emm.2013.11

Ross CL, Siriwardane M, Almeida-Porada G, Porada CD, Brink P, Christ GJ, et al. The effect of low-frequency electromagnetic field on human bone marrow stem/progenitor cell differentiation. Stem Cell Res 2015; 15(1): 96–108. doi: 10.1016/j.scr.2015.04.009

Qiu Y, Tong S, Zhang L, Sakurai Y, Myers DR, Hong L, et al. Magnetic forces enable controlled drug delivery by disrupting endothelial cell-cell junctions. Nat Commun. 2017; 8: 15594. doi: 10.1038/ncomms15594

Riggio C, Calatayud MP, Giannaccini M, Sanz B, Torres TE, Fernandez-Pacheco R, et al. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomed-Nanotechnol. 2014; 10(7): 1549–58. doi: 10.1016/j.nano.2013.12.008

Wang P, Ma S, Ning G, Chen W, Wang B, Ye D, et al. Entry-prohibited effect of kHz pulsed magnetic field upon interaction between SPIO nanoparticles and mesenchymal stem cells. IEEE Trans Biomed Eng 2020; 67(4): 1152–8. doi: 10.1109/TBME.2019.2931774

Israsena N, Hu M, Fu W, Kan L, Kessler JA. The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol 2004; 268(1): 220–31. doi: 10.1016/j.ydbio.2003.12.024

Akai J, Halley PA, Storey KG. FGF-dependent Notch signaling maintains the spinal cord stem zone. Genes Dev. 2005; 19(23): 2877–87. doi: 10.1101/gad.357705

Han S, Kim DH, Sung J, Yang H, Park JW, Youn I. Electrical stimulation accelerates neurite regeneration in axotomized dorsal root ganglion neurons by increasing MMP-2 expression. Biochem Biophys Res Commun 2019; 508(2): 348–53. doi: 10.1016/j.bbrc.2018.11.159

Wang M, Yu L, Zhu LY, He H, Ren J, Pan J, et al. Cytokines induce monkey neural stem cell differentiation through Notch signaling. Biomed Res Int 2020; 2020: 1308526. doi: 10.1155/2020/1308526

Terashima M, Kobayashi M, Motomiya M, Inoue N, Yoshida T, Okano H, et al. Analysis of the expression and function of BRINP family genes during neuronal differentiation in mouse embryonic stem cell-derived neural stem cells. J Neurosci Res 2010; 88(7): 1387–93. doi: 10.1002/jnr.22315

Li B, Yi P, Zhang B, Xu C, Liu Q, Pi Z, et al. Differences in endoplasmic reticulum stress signalling kinetics determine cell survival outcome through activation of MKP-1. Cell Signal 2011; 23(1): 35–45. doi: 10.1016/j.cellsig.2010.07.019

Laurenti E, Wilson A, Trumpp A. Myc’s other life: stem cells and beyond. Curr Opin Cell Biol 2009; 21(6): 844–54. doi: 10.1016/j.ceb.2009.09.006

Knoepfler PS, Cheng PF, Eisenman RN. N-myc is essential during neurogenesis for the rapid expansion of progenitor cell populations and the inhibition of neuronal differentiation. Genes Dev 2002; 16(20): 2699–712. doi: 10.1101/gad.1021202

Mansouri S, Agartz I, Ogren SO, Patrone C, Lundberg M. PACAP protects adult neural stem cells from the neurotoxic effect of ketamine associated with decreased apoptosis, ER stress and mTOR pathway activation. PLoS One 2017; 12(1): e0170496. doi: 10.1371/journal.pone.0170496

Wu T, Zhang X, Huang X, Yang Y, Hua X. Regulation of cyclin B2 expression and cell cycle G2/m transition by menin. J Biol Chem 2010; 285(24): 18291–300. doi: 10.1074/jbc.M110.106575

Panto MR, Zappala A, Tuorto F, Cicirata F. Role of the Otx1 gene in cell differentiation of mammalian cortex. Eur J Neurosci 2004; 19(10): 2893–902. doi: 10.1111/j.0953-816X.2004.03326.x

Gao P, Postiglione MP, Krieger TG, Hernandez L, Wang C, Han Z, et al. Deterministic progenitor behavior and unitary production of neurons in the neocortex. Cell 2014; 159(4): 775–88. doi: 10.1016/j.cell.2014.10.027

Huang B, Li X, Tu X, Zhao W, Zhu D, Feng Y, et al. OTX1 regulates cell cycle progression of neural progenitors in the developing cerebral cortex. J Biol Chem 2018; 293(6): 2137–48. doi: 10.1074/jbc.RA117.001249

Bhattacharya R, Senbanerjee S, Lin Z, Mir S, Hamik A, Wang P, et al. Inhibition of vascular permeability factor/vascular endothelial growth factor-mediated angiogenesis by the Kruppel-like factor KLF2. J Biol Chem 2005; 280(32): 28848–51. doi: 10.1074/jbc.C500200200

Gao Y, Qiao H, Zhong T, Lu Z, Hou Y. MicroRNA29a promotes the neural differentiation of rat neural stem/progenitor cells by targeting KLF4. Mol Med Rep 2020; 22(2): 1008–16. doi: 10.3892/mmr.2020.11177

Song L, Sun N, Peng G, Chen J, Han JD, Jing N. Genome-wide ChIP-seq and RNA-seq analyses of Pou3f1 during mouse pluripotent stem cell neural fate commitment. Genom Data. 2015; 5: 375–7. doi: 10.1016/j.gdata.2015.06.028

Castelo-Branco G, Lilja T, Wallenborg K, Falcao AM, Marques SC, Gracias A, et al. Neural stem cell differentiation is dictated by distinct actions of nuclear receptor corepressors and histone deacetylases. Stem Cell Rep. 2014; 3(3): 502–15. doi: 10.1016/j.stemcr.2014.07.008

Rowitch DH. Glial specification in the vertebrate neural tube. Nat Rev Neurosci. 2004; 5(5): 409–19. doi: 10.1038/nrn1389

Stolt CC, Rehberg S, Ader M, Lommes P, Riethmacher D, Schachner M, et al. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 2002; 16(2): 165–70. doi: 10.1101/gad.215802

Soundarapandian MM, Selvaraj V, Lo UG, Golub MS, Feldman DH, Pleasure DE, et al. Zfp488 promotes oligodendrocyte differentiation of neural progenitor cells in adult mice after demyelination. Sci Rep. 2011; 1: 2. doi: 10.1038/srep00002

Wang SZ, Dulin J, Wu H, Hurlock E, Lee SE, Jansson K, et al. An oligodendrocyte-specific zinc-finger transcription regulator cooperates with Olig2 to promote oligodendrocyte differentiation. Development 2006; 133(17): 3389–98. doi: 10.1242/dev.02522

Biswas S, Chung SH, Jiang P, Dehghan S, Deng W. Development of glial restricted human neural stem cells for oligodendrocyte differentiation in vitro and in vivo. Sci Rep. 2019; 9(1): 9013. doi: 10.1038/s41598-019-45247-3

Jung S, Park RH, Kim S, Jeon YJ, Ham DS, Jung MY, et al. Id proteins facilitate self-renewal and proliferation of neural stem cells. Stem Cells Dev 2010; 19(6): 831–41. doi: 10.1089/scd.2009.0093

Iavarone A, Garg P, Lasorella A, Hsu J, Israel MA. The helix-loop-helix protein Id-2 enhances cell proliferation and binds to the retinoblastoma protein. Genes Dev 1994; 8(11): 1270–84. doi: 10.1101/gad.8.11.1270

Svitkina T. The actin cytoskeleton and actin-based motility. Cold Spring Harb Perspect Biol 2018; 10(1): a018267. doi: 10.1101/cshperspect.a018267

Published
2022-01-07
How to Cite
Li, D., & Tang, M.-L. (2022). The effects of superparamagnetic iron oxide nanoparticle exposure on gene expression patterns in the neural stem cells under magnetic field. STEMedicine, 3(1), e117. https://doi.org/10.37175/stemedicine.v3i1.117
Section
Research articles