Magnesium in aging and aging-related disease

  • Zhiguo Zou Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
  • Qifan Lu Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
  • Yifan Wang Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
  • Xing Gao Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
  • Xinye Zhu Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
  • Xiyuan Lu Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
  • Jun Pu Department of Cardiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
Keywords: magnesium, magnesium transporters, aging, human disease


Magnesium (Mg2+) is an essential divalent cation in human body. Its balance is tightly controlled via a balanced interplay among intestinal absorption, storage, and renal excretion, involving multiple transporters across cell membrane that regulate Mg2+ influx and efflux. Mg2+ is involved in a variety of physiological and pathological processes such as enzymatic reactions, energy metabolism, cell proliferation, apoptosis, oxidative stress, and inflammation. In particular, Mg2+ contributes to the molecular hallmarks of aging. Emerging evidence demonstrates that altered Mg2+ status has been associated with many aging-related diseases, including cancer, cardiovascular disease, neurodegenerative disease, musculoskeletal function, metabolic syndrome, and COVID-19. In this review, we focus on Mg2+ and its association with molecular hallmarks of aging. We also summarize recent findings supporting an important role of Mg2+ in aging-related disease including the COVID-19 pandemic.


Download data is not yet available.


Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin Kidney J 2012; 5(Suppl 1): i3–14. doi: 10.1093/ndtplus/sfr163

Yamanaka R, Shindo Y, Oka K. Magnesium is a key player in neuronal maturation and neuropathology. Int J Mol Sci 2019; 20(14): 3439. doi: 10.3390/ijms20143439

de Baaij JH, Hoenderop JG, Bindels RJ. Magnesium in man: implications for health and disease. Physiol Rev 2015; 95(1): 1–46. doi: 10.1152/physrev.00012.2014

Giménez-Mascarell P, Schirrmacher CE, Martínez-Cruz LA, Müller D, Runnels LW. Novel aspects of renal magnesium homeostasis TRPM6 and TRPM7: a mul-TRP-PLIK-cation of channel functions. Front Pediatr 2018; 6(1): 77. doi: 10.3389/fped.2018.00077

Gröber U, Schmidt J, Kisters K. Magnesium in prevention and therapy. Nutrients 2015; 7(9): 8199–226. doi: 10.3390/nu7095388

Fabbri E, Zoli M, Gonzalez-Freire M, Salive ME, Studenski SA, Ferrucci L. Aging and multimorbidity: new tasks, priorities, and frontiers for integrated gerontological and clinical research. J Am Med Dir Assoc 2015; 16(8): 640–7. doi: 10.1016/j.jamda.2015.03.013

Da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29: 90–112. doi: 10.1016/j.arr.2016.06.005

Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of cellular senescence. Trends Cell Biol 2018; 28(6): 436–53. doi: 10.1016/j.tcb.2018.02.001

Maguire ME, Cowan JA. Magnesium chemistry and biochemistry. Biometals 2002; 15(3): 203–10. doi: 10.1023/A:1016058229972

Alfrey AC, Miller NL. Bone magnesium pools in uremia. J Clin Investig 1973; 52(12): 3019–27. doi: 10.1172/JCI107500

Romani AM. Cellular magnesium homeostasis. Arch Biochem Biophys 2011; 512(1): 1–23. doi: 10.1016/

Yamagami R, Bingaman JL, Frankel EA, Bevilacqua PC. Cellular conditions of weakly chelated magnesium ions strongly promote RNA stability and catalysis. Nat Commun 2018; 9(1): 2149. doi: 10.1038/s41467-018-04415-1

Sargenti A, Farruggia G, Zaccheroni N, Marraccini C, Sgarzi M, Cappadone C, et al. Synthesis of a highly Mg2+-selective fluorescent probe and its application to quantifying and imaging total intracellular magnesium. Nat Protoc 2017; 12(3): 461–71. doi: 10.1038/nprot.2016.183

Saris NE, Mervaala E, Karppanen H, Khawaja JA, Lewenstam A. Magnesium. An update on physiological, clinical and analytical aspects. Clin Chim Acta 2000; 294(1–2): 1–26. doi: 10.1016/S0009-8981(99)00258-2

de Baaij JH, Hoenderop JG, Bindels RJ. Regulation of magnesium balance: lessons learned from human genetic disease. Clin Kidney J 2012; 5(Suppl 1): i15–24. doi: 10.1093/ndtplus/sfr164

De Baaij JH. The art of magnesium transport. Magnes Res 2015; 28(3): 85–91. doi: 10.1684/mrh.2015.0388

Swaminathan R. Magnesium metabolism and its disorders. Clin Biochem Rev 2003; 24(2): 47–66.

Wolf FI, Trapani V. Cell (patho)physiology of magnesium. Clin Sci 2008; 114(1): 27–35. doi: 10.1042/CS20070129

Ikari A, Sawada H, Sanada A, Tonegawa C, Yamazaki Y, Sugatani J. Magnesium deficiency suppresses cell cycle progression mediated by increase in transcriptional activity of p21(Cip1) and p27(Kip1) in renal epithelial NRK-52E cells. J Cell Biochem 2011; 112(12): 3563–72. doi: 10.1002/jcb.23284

Martin H, Richert L, Berthelot A. Magnesium deficiency induces apoptosis in primary cultures of rat hepatocytes. J Nutr 2003; 133(8): 2505–11. doi: 10.1093/jn/133.8.2505

Feng H, Guo L, Gao H, Li XA. Deficiency of calcium and magnesium induces apoptosis via scavenger receptor BI. Life Sci 2011; 88(13–14): 606–12. doi: 10.1016/j.lfs.2011.01.020

Chen Y, Gao T, Wang Y, Yang G. Investigating the influence of magnesium ions on p53-DNA binding using atomic force microscopy. Int J Mol Sci 2017; 18(7): 1585. doi: 10.3390/ijms18071585

Chiu TK, Dickerson RE. 1 A crystal structures of B-DNA reveal sequence-specific binding and groove-specific bending of DNA by magnesium and calcium. J Mol Biol 2000; 301(4): 915–45. doi: 10.1006/jmbi.2000.4012

Price MA, Tullius TD. Using hydroxyl radical to probe DNA structure. Methods Enzymol 1992; 212: 194–219. doi: 10.1016/0076-6879(92)12013-G

SantaLucia J, Jr, Hicks D. The thermodynamics of DNA structural motifs. Annu Rev Biophys Biomol Struct 2004; 33: 415–40. doi: 10.1146/annurev.biophys.32.110601.141800

Bui VC, Nguyen TH. DNA aggregation induced by Mg(2+) ions under different conditions. J Mol Recognit 2018; 31(9): e2721. doi: 10.1002/jmr.2721

Anastassopoulou J, Theophanides T. Magnesium-DNA interactions and the possible relation of magnesium to carcinogenesis. Irradiation and free radicals. Crit Rev Oncol Hematol 2002; 42(1): 79–91. doi: 10.1016/S1040-8428(02)00006-9

Kielar C, Xin Y, Shen B, Kostiainen MA, Grundmeier G, Linko V, et al. On the stability of DNA origami nanostructures in low-magnesium buffers. Angew Chem Int Ed Engl 2018; 57(30): 9470–4. doi: 10.1002/anie.201802890

Calsou P, Salles B. Properties of damage-dependent DNA incision by nucleotide excision repair in human cell-free extracts. Nucleic Acids Res 1994; 22(23): 4937–42. doi: 10.1093/nar/22.23.4937

Ban C, Junop M, Yang W. Transformation of MutL by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 1999; 97(1): 85–97. doi: 10.1016/S0092-8674(00)80717-5

Hartwig A. Role of magnesium in genomic stability. Mutat Res 2001; 475(1–2): 113–21. doi: 10.1016/S0027-5107(01)00074-4

Stankovic MS, Janjetovic K, Velimirovic M, Milenkovic M, Stojkovic T, Puskas N, et al. Effects of IL-33/ST2 pathway in acute inflammation on tissue damage, antioxidative parameters, magnesium concentration and cytokines profile. Exp Mol Pathol 2016; 101(1): 31–7. doi: 10.1016/j.yexmp.2016.05.012

Maier JA, Castiglioni S, Locatelli L, Zocchi M, Mazur A. Magnesium and inflammation: advances and perspectives. Semin Cell Dev Biol 2021; 115: 37–44. doi: 10.1016/j.semcdb.2020.11.002

Kolisek M, Touyz RM, Romani A, Barbagallo M. Magnesium and other biometals in oxidative medicine and redox biology. Oxid Med Cell Longev 2017; 2017: 7428796. doi: 10.1155/2017/7428796

Locatelli L, Fedele G, Castiglioni S, Maier JA. Magnesium deficiency induces lipid accumulation in vascular endothelial cells via oxidative stress-the potential contribution of EDF-1 and PPARgamma. Int J Mol Sci 2021; 22(3): 1050. doi: 10.3390/ijms22031050

Castiglioni S, Cazzaniga A, Maier JA. Potential interplay between NFκB and PPARγ in human dermal microvascular endothelial cells cultured in low magnesium. Magnes Res 2014; 27(2): 86–93. doi: 10.1684/mrh.2014.0365

Cairns CB, Kraft M. Magnesium attenuates the neutrophil respiratory burst in adult asthmatic patients. Acad Emerg Med 1996; 3(12): 1093–7. doi: 10.1111/j.1553-2712.1996.tb03366.x

Shahi A, Aslani S, Ataollahi M, Mahmoudi M. The role of magnesium in different inflammatory diseases. Inflammopharmacology 2019; 27(4): 649–61. doi: 10.1007/s10787-019-00603-7

Tower J. Programmed cell death in aging. Ageing Res Rev 2015; 23(Pt A): 90–100. doi: 10.1016/j.arr.2015.04.002

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194–217. doi: 10.1016/j.cell.2013.05.039

Muraki K, Nyhan K, Han L, Murnane JP. Mechanisms of telomere loss and their consequences for chromosome instability. Front Oncol 2012; 2: 135. doi: 10.3389/fonc.2012.00135

Ganesh S, Qin Z, Spagnol ST, Biegler MT, Coffey KA, Kalinowski A, et al. The tail domain of lamin B1 is more strongly modulated by divalent cations than lamin A. Nucleus 2015; 6(3): 203–11. doi: 10.1080/19491034.2015.1031436

Zvereva MI, Shcherbakova DM, Dontsova OA. Telomerase: structure, functions, and activity regulation. Biochemistry 2010; 75(13): 1563–83. doi: 10.1134/S0006297910130055

Zhou J, Ding D, Wang M, Cong YS. Telomerase reverse transcriptase in the regulation of gene expression. BMB Rep 2014; 47(1): 8–14. doi: 10.5483/BMBRep.2014.47.1.284

Feeney KA, Hansen LL, Putker M, Olivares-Yañez C, Day J, Eades LJ, et al. Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature 2016; 532(7599): 375–9. doi: 10.1038/nature17407

Liu Y, Wang Q, Zhang Z, Fu R, Zhou T, Long C, et al. Magnesium supplementation enhances mTOR signalling to facilitate myogenic differentiation and improve aged muscle performance. Bone 2021; 146: 115886. doi: 10.1016/j.bone.2021.115886

Chen WD, Wen MS, Shie SS, Lo YL, Wo HT, Wang CC, et al. The circadian rhythm controls telomeres and telomerase activity. Biochem Biophys Res Commun 2014; 451(3): 408–14. doi: 10.1016/j.bbrc.2014.07.138

Liu M, Dudley SC, Jr., de Baaij JH, Arjona FJ, van den Brand M, Lavrijsen M, et al. Magnesium, oxidative stress, inflammation, and cardiovascular disease. Antioxidants 2020; 9(10): 28565. doi: 10.3390/antiox9100907

Yamanaka R, Tabata S, Shindo Y, Hotta K, Suzuki K, Soga T, et al. Mitochondrial Mg(2+) homeostasis decides cellular energy metabolism and vulnerability to stress. Sci Rep 2016; 6: 30027. doi: 10.1038/srep30027

Merolle L, Sponder G, Sargenti A, Mastrototaro L, Cappadone C, Farruggia G, et al. Overexpression of the mitochondrial Mg channel MRS2 increases total cellular Mg concentration and influences sensitivity to apoptosis. Metallomics 2018; 10(7): 917–28. doi: 10.1039/C8MT00050F

Goytain A, Quamme GA. Identification and characterization of a novel family of membrane magnesium transporters, MMgT1 and MMgT2. Am J Physiol Cell Physiol 2008; 294(2): C495–502. doi: 10.1152/ajpcell.00238.2007

Mastrototaro L, Smorodchenko A, Aschenbach JR, Kolisek M, Sponder G. Solute carrier 41A3 encodes for a mitochondrial Mg(2+) efflux system. Sci Rep 2016; 6: 27999. doi: 10.1038/srep27999

Su LT, Chen HC, González-Pagán O, Overton JD, Xie J, Yue L, et al. TRPM7 activates m-calpain by stress-dependent stimulation of p38 MAPK and c-Jun N-terminal kinase. J Mol Biol 2010; 396(4): 858–69. doi: 10.1016/j.jmb.2010.01.014

Inoue H, Murayama T, Tashiro M, Sakurai T, Konishi M. Mg(2+)- and ATP-dependent inhibition of transient receptor potential melastatin 7 by oxidative stress. Free Radic Biol Med 2014; 72: 257–66. doi: 10.1016/j.freeradbiomed.2014.04.015

Morais JB, Severo JS, Santos LR, de Sousa Melo SR, de Oliveira Santos R, de Oliveira AR, et al. Role of magnesium in oxidative stress in individuals with obesity. Biol Trace Elem Res 2017; 176(1): 20–6. doi: 10.1007/s12011-016-0793-1

Villa-Bellosta R. Dietary magnesium supplementation improves lifespan in a mouse model of progeria. EMBO Mol Med 2020; 12(10): e12423. doi: 10.15252/emmm.202012423

Sirover MA, Loeb LA. Metal activation of DNA synthesis. Biochem Biophys Res Commun 1976; 70(3): 812–7. doi: 10.1016/0006-291X(76)90664-1

Ohyama T. New aspects of magnesium function: a key regulator in nucleosome self-assembly, chromatin folding and phase separation. Int J Mol Sci 2019; 20(17): 4232. doi: 10.3390/ijms20174232

Krzywoszynska K, Witkowska D, Swiatek-Kozlowska J, Szebesczyk A, Kozlowski H. General aspects of metal ions as signaling agents in health and disease. Biomolecules 2020; 10(10): 1417. doi: 10.3390/biom10101417

Giannakis C, Forbes IJ, Zalewski PD. Ca2+/Mg(2+)-dependent nuclease: tissue distribution, relationship to inter-nucleosomal DNA fragmentation and inhibition by Zn2+. Biochem Biophys Res Commun 1991; 181(2): 915–20. doi: 10.1016/0006-291X(91)91278-K

Hruby A, McKeown NM, Song Y, Djousse L. Dietary magnesium and genetic interactions in diabetes and related risk factors: a brief overview of current knowledge. Nutrients 2013; 5(12): 4990–5011. doi: 10.3390/nu5124990

Takaya J, Iharada A, Okihana H, Kaneko K. Magnesium deficiency in pregnant rats alters methylation of specific cytosines in the hepatic hydroxysteroid dehydrogenase-2 promoter of the offspring. Epigenetics 2011; 6(5): 573–8. doi: 10.4161/epi.6.5.15220

Shah NC, Shah GJ, Li Z, Jiang XC, Altura BT, Altura BM. Short-term magnesium deficiency downregulates telomerase, upregulates neutral sphingomyelinase and induces oxidative DNA damage in cardiovascular tissues: relevance to atherogenesis, cardiovascular diseases and aging. Int J Clin Exp Med 2014; 7(3): 497–514.

Houtkooper RH, Argmann C, Houten SM, Cantó C, Jeninga EH, Andreux PA, et al. The metabolic footprint of aging in mice. Sci Rep 2011; 1: 134. doi: 10.1038/srep00134

Garfinkel L, Garfinkel D. Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 1985; 4(2–3): 60–72.

Thomas AP, Diggle TA, Denton RM. Sensitivity of pyruvate dehydrogenase phosphate phosphatase to magnesium ions. Similar effects of spermine and insulin. Biochem J 1986; 238(1): 83–91. doi: 10.1042/bj2380083

Tretter L, Adam-Vizi V. Alpha-ketoglutarate dehydrogenase: a target and generator of oxidative stress. Philos Trans R Soc Lond B Biol Sci 2005; 360(1464): 2335–45. doi: 10.1098/rstb.2005.1764

McLain AL, Szweda PA, Szweda LI. α-Ketoglutarate dehydrogenase: a mitochondrial redox sensor. Free Radic Res 2011; 45(1): 29–36. doi: 10.3109/10715762.2010.534163

Mooren FC. Magnesium and disturbances in carbohydrate metabolism. Diabetes Obes Metab 2015; 17(9): 813–23. doi: 10.1111/dom.12492

Rodríguez-Morán M, Guerrero-Romero F. Insulin secretion is decreased in non-diabetic individuals with hypomagnesaemia. Diabetes Metab Res Rev 2011; 27(6): 590–6. doi: 10.1002/dmrr.1206

Kamran M, Kharazmi F, Malekzadeh K, Talebi A, Khosravi F, Soltani N. Effect of long-term administration of oral magnesium sulfate and insulin to reduce streptozotocin-induced hyperglycemia in rats: the role of Akt2 and IRS1 gene expressions. Biol Trace Elem Res 2019; 190(2): 396–404. doi: 10.1007/s12011-018-1555-z

Balasubramanian P, Howell PR, Anderson RM. Aging and caloric restriction research: a biological perspective with translational potential. EBioMedicine 2017; 21: 37–44. doi: 10.1016/j.ebiom.2017.06.015

Abraham KJ, Chan JN, Salvi JS, Ho B, Hall A, Vidya E, et al. Intersection of calorie restriction and magnesium in the suppression of genome-destabilizing RNA-DNA hybrids. Nucleic Acids Res 2016; 44(18): 8870–84. doi: 10.1093/nar/gkw752

Veronese N, Zurlo A, Solmi M, Luchini C, Trevisan C, Bano G, et al. Magnesium status in Alzheimer’s disease: a systematic review. Am J Alzheimers Dis Other Demen 2016; 31(3): 208–13. doi: 10.1177/1533317515602674

Yu J, Sun M, Chen Z, Lu J, Liu Y, Zhou L, et al. Magnesium modulates amyloid-beta protein precursor trafficking and processing. J Alzheimers Dis 2010; 20(4): 1091–106. doi: 10.3233/JAD-2010-091444

Yu X, Guan PP, Zhu D, Liang YY, Wang T, Wang ZY, et al. Magnesium ions inhibit the expression of tumor necrosis factor α and the activity of γ-secretase in a β-amyloid protein-dependent mechanism in APP/PS1 transgenic mice. Front Mol Neurosci 2018; 11(5): 172. doi: 10.3389/fnmol.2018.00172

Zhu D, Su Y, Fu B, Xu H. Magnesium reduces blood-brain barrier permeability and regulates amyloid-β transcytosis. Mol Neurobiol 2018; 55(9): 7118–31. doi: 10.1007/s12035-018-0896-0

Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, et al. Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 2018; 150(8): 1081–105. doi: 10.1085/jgp.201812032

Nechifor M. Magnesium in addiction – a general view. Magnes Res 2018; 31(3): 90–8. doi: 10.1684/mrh.2018.0443

Yogi A, Callera GE, Antunes TT, Tostes RC, Touyz RM. Transient receptor potential melastatin 7 (TRPM7) cation channels, magnesium and the vascular system in hypertension. Circ J 2011; 75(2): 237–45. doi: 10.1253/circj.CJ-10-1021

Schlingmann KP, Waldegger S, Konrad M, Chubanov V, Gudermann T. TRPM6 and TRPM7 – gatekeepers of human magnesium metabolism. Biochim Biophys Acta 2007; 1772(8): 813–21. doi: 10.1016/j.bbadis.2007.03.009

Trzeciakiewicz A, Opolski A, Mazur A. [TRPM7: a protein responsible for magnesium homeostasis in a cell]. Postepy Hig Med Dosw 2005; 59: 496–502.

He Y, Yao G, Savoia C, Touyz RM. Transient receptor potential melastatin 7 ion channels regulate magnesium homeostasis in vascular smooth muscle cells: role of angiotensin II. Circ Res 2005; 96(2): 207–15. doi: 10.1161/01.RES.0000152967.88472.3e

Sahni J, Tamura R, Sweet IR, Scharenberg AM. TRPM7 regulates quiescent/proliferative metabolic transitions in lymphocytes. Cell Cycle 2010; 9(17): 3565–74. doi: 10.4161/cc.9.17.12798

Sponder G, Abdulhanan N, Fröhlich N, Mastrototaro L, Aschenbach JR, Röntgen M, et al. Overexpression of Na(+)/Mg(2+) exchanger SLC41A1 attenuates pro-survival signaling. Oncotarget 2018; 9(4): 5084–104. doi: 10.18632/oncotarget.23598

Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology 2021; 22(2): 165–87. doi: 10.1007/s10522-021-09910-5

Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009; 119(3): e21–181. doi: 10.1161/CIRCULATIONAHA.108.191261

Mayrbäurl B, Thaler J. [Cancer in the elderly]. Acta Med Austriaca 2004; 31(2): 40–4.

Bringuier M, Tazaro-Martinez C, Bonhomme S, Geiss R. [Epidemiology of cancer in the elderly in France]. Soins Gerontol 2019; 24(135): 12–4. doi: 10.1016/j.sger.2018.11.003

Castiglioni S, Maier JA. Magnesium and cancer: a dangerous liason. Magnes Res 2011; 24(3): S92–100. doi: 10.1684/mrh.2011.0285

Covacci V, Bruzzese N, Sgambato A, Di Francesco A, Russo MA, Wolf FI, et al. Magnesium restriction induces granulocytic differentiation and expression of p27Kip1 in human leukemic HL-60 cells. J Cell Biochem 1998; 70(3): 313–22. doi: 10.1002/(SICI)1097-4644(19980901)70:3<313::AID-JCB4>3.0.CO;2-Q

Sgambato A, Wolf FI, Faraglia B, Cittadini A. Magnesium depletion causes growth inhibition, reduced expression of cyclin D1, and increased expression of P27Kip1 in normal but not in transformed mammary epithelial cells. J Cell Physiol 1999; 180(2): 245–54. doi: 10.1002/(SICI)1097-4652(199908)180:2<245::AID-JCP12>3.0.CO;2-R

Yan YY, Lin J, Ou TM, Tan JH, Li D, Gu LQ, et al. Selective recognition of oncogene promoter G-quadruplexes by Mg2+. Biochem Biophys Res Commun 2010; 402(4): 614–8. doi: 10.1016/j.bbrc.2010.10.065

Yee NS, Kazi AA, Li Q, Yang Z, Berg A, Yee RK. Aberrant over-expression of TRPM7 ion channels in pancreatic cancer: required for cancer cell invasion and implicated in tumor growth and metastasis. Biology Open 2015; 4(4): 507–14. doi: 10.1242/bio.20137088

Yee NS. Role of TRPM7 in cancer: potential as molecular biomarker and therapeutic target. Pharmaceuticals 2017; 10(2): 39. doi: 10.3390/ph10020039

Hardy S, Uetani N, Wong N, Kostantin E, Labbé DP, Bégin LR, et al. The protein tyrosine phosphatase PRL-2 interacts with the magnesium transporter CNNM3 to promote oncogenesis. Oncogene 2015; 34(8): 986–95. doi: 10.1038/onc.2014.33

Tangvoraphonkchai K, Davenport A. Magnesium and cardiovascular disease. Adv Chronic Kidney Dis 2018; 25(3): 251–60. doi: 10.1053/j.ackd.2018.02.010

Kolte D, Vijayaraghavan K, Khera S, Sica DA, Frishman WH. Role of magnesium in cardiovascular diseases. Cardiol Rev 2014; 22(4): 182–92. doi: 10.1097/CRD.0000000000000003

Bibawy JN, Parikh V, Wahba J, Barsoum EA, Lafferty J, Kowalski M, et al. Pantoprazole (proton pump inhibitor) contributing to Torsades de Pointes storm. Circ Arrhythm Electrophysiol 2013; 6(2): e17–9. doi: 10.1161/CIRCEP.112.000101

Khan N, Gray IP, Obejero-Paz CA, Jones SW. Permeation and gating in CaV3.1 (alpha1G) T-type calcium channels effects of Ca2+, Ba2+, Mg2+, and Na+. J Gen Physiol 2008; 132(2): 223–38. doi: 10.1085/jgp.200809986

Romani AM. Beneficial role of Mg2+ in prevention and treatment of hypertension. Int J Hypertens 2018; 2018: 9013721. doi: 10.1155/2018/9013721

Lin J, Zhou S, Zhao T, Ju T, Zhang L. TRPM7 channel regulates ox-LDL-induced proliferation and migration of vascular smooth muscle cells via MEK-ERK pathways. FEBS Lett 2016; 590(4): 520–32. doi: 10.1002/1873-3468.12088

Antunes TT, Callera GE, He Y, Yogi A, Ryazanov AG, Ryazanova LV, et al. Transient receptor potential melastatin 7 cation channel kinase: new player in angiotensin II-induced hypertension. Hypertension 2016; 67(4): 763–73. doi: 10.1161/HYPERTENSIONAHA.115.07021

Satake K, Lee JD, Shimizu H, Uzui H, Mitsuke Y, Yue H, et al. Effects of magnesium on prostacyclin synthesis and intracellular free calcium concentration in vascular cells. Magnes Res 2004; 17(1): 20–7.

White RE, Hartzell HC. Effects of intracellular free magnesium on calcium current in isolated cardiac myocytes. Science 1988; 239(4841 Pt 1): 778–80. doi: 10.1126/science.2448878

Maier JA, Bernardini D, Rayssiguier Y, Mazur A. High concentrations of magnesium modulate vascular endothelial cell behaviour in vitro. Biochim Biophys Acta 2004; 1689(1): 6–12. doi: 10.1016/j.bbadis.2004.02.004

Sobhani AR, Farshidi H, Azarkish F, Eslami M, Eftekhar E, Keshavarz M, et al. Magnesium sulfate improves some risk factors for atherosclerosis in patients suffering from one or two coronary artery diseases: a double-blind clinical trial study. Clin Pharmacol 2020; 12: 159–69. doi: 10.2147/CPAA.S261264

Chistiakov DA, Myasoedova VA, Melnichenko AA, Grechko AV, Orekhov AN. Calcifying matrix vesicles and atherosclerosis. Biomed Res Int 2017; 2017: 7463590. doi: 10.1155/2017/7463590

Montezano AC, Zimmerman D, Yusuf H, Burger D, Chignalia AZ, Wadhera V, et al. Vascular smooth muscle cell differentiation to an osteogenic phenotype involves TRPM7 modulation by magnesium. Hypertension 2010; 56(3): 453–62. doi: 10.1161/HYPERTENSIONAHA.110.152058

Liu M, Liu H, Feng F, Xie A, Kang GJ, Zhao Y, et al. Magnesium deficiency causes a reversible, metabolic, diastolic cardiomyopathy. J Am Heart Assoc 2021; 10(12): e020205. doi: 10.1161/JAHA.120.020205

Slutsky I, Abumaria N, Wu LJ, Huang C, Zhang L, Li B, et al. Enhancement of learning and memory by elevating brain magnesium. Neuron 2010; 65(2): 165–77. doi: 10.1016/j.neuron.2009.12.026

Wilson C, González-Billault C. Regulation of cytoskeletal dynamics by redox signaling and oxidative stress: implications for neuronal development and trafficking. Front Cell Neurosci 2015; 9: 381. doi: 10.3389/fncel.2015.00381

Turlova E, Bae CYJ, Deurloo M, Chen W, Barszczyk A, Horgen FD, et al. TRPM7 regulates axonal outgrowth and maturation of primary hippocampal neurons. Mol Neurobiol 2016; 53(1): 595–610. doi: 10.1007/s12035-014-9032-y

Zeng Z, Leng T, Feng X, Sun H, Inoue K, Zhu L, et al. Silencing TRPM7 in mouse cortical astrocytes impairs cell proliferation and migration via ERK and JNK signaling pathways. PLoS One 2015; 10(3): e0119912. doi: 10.1371/journal.pone.0119912

Cilliler AE, Ozturk S, Ozbakir S. Serum magnesium level and clinical deterioration in Alzheimer’s disease. Gerontology 2007; 53(6): 419–22. doi: 10.1159/000110873

Lin L, Yan M, Wu B, Lin R, Zheng Z. Expression of magnesium transporter SLC41A1 in the striatum of 6-hydroxydopamine-induced parkinsonian rats. Brain Res Bull 2018; 142: 338–43. doi: 10.1016/j.brainresbull.2018.08.019

Kuramoto T, Kuwamura M, Tokuda S, Izawa T, Nakane Y, Kitada K, et al. A mutation in the gene encoding mitochondrial Mg²+ channel MRS2 results in demyelination in the rat. PLoS Genet 2011; 7(1): e1001262. doi: 10.1371/journal.pgen.1001262

Schoenen J, Sianard-Gainko J, Lenaerts M. Blood magnesium levels in migraine. Cephalalgia 1991; 11(2): 97–9. doi: 10.1046/j.1468-2982.1991.1102097.x

Altura BT, Memon ZI, Zhang A, Cheng TP, Silverman R, Cracco RQ, et al. Low levels of serum ionized magnesium are found in patients early after stroke which result in rapid elevation in cytosolic free calcium and spasm in cerebral vascular muscle cells. Neurosci Lett 1997; 230(1): 37–40. doi: 10.1016/S0304-3940(97)00471-0

Sendur OF, Tastaban E, Turan Y, Ulman C. The relationship between serum trace element levels and clinical parameters in patients with fibromyalgia. Rheumatol Int 2008; 28(11): 1117–21. doi: 10.1007/s00296-008-0593-9

Veronese N, Berton L, Carraro S, Bolzetta F, De Rui M, Perissinotto E, et al. Effect of oral magnesium supplementation on physical performance in healthy elderly women involved in a weekly exercise program: a randomized controlled trial. Am J Clin Nutr 2014; 100(3): 974–81. doi: 10.3945/ajcn.113.080168

Uwitonze AM, Razzaque MS. Role of magnesium in vitamin D activation and function. J Am Osteopath Assoc 2018; 118(3): 181–9. doi: 10.7556/jaoa.2018.037

Dos Santos LR, Melo SRS, Severo JS, Morais JBS, da Silva LD, de Paiva Sousa M, et al. Cardiovascular diseases in obesity: what is the role of magnesium? Biol Trace Elem Res 2021; 199(11): 4020–7. doi: 10.1007/s12011-020-02528-7

Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR, Downes M, et al. PPARγ signaling and metabolism: the good, the bad and the future. Nat Med 2013; 19(5): 557–66. doi: 10.1038/nm.3159

Wei CC, Wu K, Gao Y, Zhang LH, Li DD, Luo Z. Magnesium reduces hepatic lipid accumulation in yellow catfish (Pelteobagrus fulvidraco) and modulates lipogenesis and lipolysis via PPARA, JAK-STAT, and AMPK pathways in hepatocytes. J Nutr 2017; 147(6): 1070–8. doi: 10.3945/jn.116.245852

Volpe SL. Magnesium, the metabolic syndrome, insulin resistance, and type 2 diabetes mellitus. Crit Rev Food Sci Nutr 2008; 48(3): 293–300. doi: 10.1080/10408390701326235

Guerrero-Romero F, Jaquez-Chairez FO, Rodríguez-Morán M. Magnesium in metabolic syndrome: a review based on randomized, double-blind clinical trials. Magnes Res 2016; 29(4): 146–53. doi: 10.1684/mrh.2016.0404

Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 2020; 382(8): 727–33. doi: 10.1056/NEJMoa2001017

Cooper ID, Crofts CAP, DiNicolantonio JJ, Malhotra A, Elliott B, Kyriakidou Y, et al. Relationships between hyperinsulinaemia, magnesium, vitamin D, thrombosis and COVID-19: rationale for clinical management. Open Heart 2020; 7(2): e001356. doi: 10.1136/openhrt-2020-001356

Zeng F, Deng G, Cui Y, Zhang Y, Dai M, Chen L, et al. A predictive model for the severity of COVID-19 in elderly patients. Aging 2020; 12(21): 20982–96. doi: 10.18632/aging.103980

Iotti S, Wolf F, Mazur A, Maier JA. The COVID-19 pandemic: is there a role for magnesium? Hypotheses and perspectives. Magnes Res 2020;33(2):21–27.

Hansen BA, Bruserud Ø, Tang CF, Ding H, Jiao RQ, Wu XX, et al. Hypomagnesemia in critically ill patients. J Intensive Care 2018; 6: 21. doi: 10.1186/s40560-018-0291-y

Clerkin KJ, Fried JA, Raikhelkar J, Sayer G, Griffin JM, Masoumi A, et al. COVID-19 and cardiovascular disease. Circulation 2020; 141(20): 1648–55. doi: 10.1161/CIRCULATIONAHA.120.046941

Çiçek G, Açıkgoz SK, Yayla Ç, Kundi H, İleri M. Magnesium as a predictor of acute stent thrombosis in patients with ST-segment elevation myocardial infarction who underwent primary angioplasty. Coron Artery Dis 2016; 27(1): 47–51. doi: 10.1097/MCA.0000000000000318

Zhu D, You J, Zhao N, Xu H. Magnesium regulates endothelial barrier functions through TRPM7, MagT1, and S1P1. Adv Sci 2019; 6(18): 1901166. doi: 10.1002/advs.201901166

Liu PP, Blet A, Smyth D, Li H. The science underlying COVID-19: implications for the cardiovascular system. Circulation 2020; 142(1): 68–78. doi: 10.1161/CIRCULATIONAHA.120.047549

Tang CF, Ding H, Jiao RQ, Wu XX, Kong LD. Possibility of magnesium supplementation for supportive treatment in patients with COVID-19. Eur J Pharmacol 2020; 886: 173546. doi: 10.1016/j.ejphar.2020.173546

How to Cite
ZouZ., LuQ., WangY., GaoX., ZhuX., LuX., & PuJ. (2022). Magnesium in aging and aging-related disease. STEMedicine, 3(2), e119.
Review articles