Aspirin alleviates the symptoms of immunoglobulin A nephropathy via suppressing platelets-mediated non-canonical NF-κB activation in B cells

  • Nomvula Johannes Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
  • Priyanka Maunga Department of Biomedical Sciences, Faculty of Science, Tshwane University of Technology, Pretoria, South Africa
Keywords: aspirin, IgA nephropathy, NF-κB, B cells


Purpose: Antiplatelet aggregation drugs, such as aspirin, can alleviate pathological renal damage in immunoglobulin A (IgA) nephropathy, although the precise mechanism is unclear.

Methods: The serum levels of platelet factor 4 (PF4), IgA, and platelet-activating factor (PAF) were assessed by enzyme-linked immunosorbent assay in IgA nephropathy patients and TANK-binding kinase 1 (TBK1)-/- tumor necrosis factor (TNF)-/- mice. The deposition of IgA in glomeruli was detected by immunofluorescence. Phorbol-12-myristate-13-acetate (PMA) induced platelets activation was examined by the cell counting kit 8 assay. B cells were further stimulated with lipopolysaccharides (LPS) or plus platelets supernatant, or combined with nuclear factor kappa-B (NF-κB) inducing kinase (NIK) inhibitor, NIK SMI1.

Results: Increased serum IgA and proportion of activated platelets were observed in IgA nephropathy patients. TBK1-/-TNF-/- mice had significant increased urinary protein and serum creatinine, and IgA deposition in glomeruli. Up-regulated serum PF4 and PAF were observed in both the IgA nephropathy patients and TBK1-/-TNF-/- mice. Aspirin suppressed the deposition of IgA in glomeruli of TBK1-/-TNF-/- mice with down-regulated platelets activation. Platelets supernatant could promote the proliferation of B cells with up-regulated IgA and sCD40L secretion and up-regulated P52 and RelB expression, which could be inhibited by NIK SMI1 administration.

Conclusion: TBK1-/-TNF-/- mice demonstrate IgA nephropathy phenotype, which could be alleviated by aspirin administration via inhibiting platelets induced non-canonical NF-κB activation mediated IgA production in B cells.


Download data is not yet available.


Lai KN, Tang SC, Schena FP, Novak J, Tomino Y, Fogo AB, et al. IgA nephropathy. Nat Rev Dis Primers 2016; 2: 16001. doi: 10.1038/nrdp.2016.1

Floege J, Amann K. Primary glomerulonephritides. Lancet 2016; 387(10032): 2036–48. doi: 10.1016/S0140-6736(16)00272-5

Floege J, Feehally J. Treatment of IgA nephropathy and Henoch-Schönlein nephritis. Nat Rev Nephrol 2013; 9(6): 320–7. doi: 10.1038/nrneph.2013.59

Liu XJ, Geng YQ, Xin SN, Huang GM, Tu XW, Ding ZR, et al. Antithrombotic drug therapy for IgA nephropathy: a meta analysis of randomized controlled trials. Intern Med 2011; 50(21): 2503–10. doi: 10.2169/internalmedicine.50.5971

Taji Y, Kuwahara T, Shikata S, Morimoto T. Meta-analysis of antiplatelet therapy for IgA nephropathy. Clin Exp Nephrol 2006; 10(4): 268–73. doi: 10.1007/s10157-006-0433-8

Hale GM, McIntosh SL, Hiki Y, Clarkson AR, Woodroffe AJ. Evidence for IgA-specific B cell hyperactivity in patients with IgA nephropathy. Kidney Int 1986; 29(3): 718–24. doi: 10.1038/ki.1986.57

Chang D, Cheng Y, Luo R, Zhang C, Zuo M, Xu Y, et al. The prognostic value of platelet-to-lymphocyte ratio on the long-term renal survival in patients with IgA nephropathy. Int Urol Nephrol 2021; 53(3): 523–30. doi: 10.1007/s11255-020-02651-3

Tomino Y, Tsushima Y, Ohmuro H, Shimizu M, Kuramoto T, Shirato I, et al. Detection of activated platelets in urinary sediments by immunofluorescence using monoclonal antibody to human platelet GMP-140 in patients with IgA nephropathy. J Clin Lab Anal 1993; 7(6): 329–33. doi: 10.1002/jcla.1860070606

Mackay F, Browning JL. BAFF: a fundamental survival factor for B cells. Nat Rev Immunol 2002; 2(7): 465–75. doi: 10.1038/nri844

Cazac BB, Roes J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 2000; 13(4): 443–51. doi: 10.1016/S1074-7613(00)00044-3

Jin J, Xiao Y, Chang JH, Yu J, Hu H, Starr R, et al. The kinase TBK1 controls IgA class switching by negatively regulating noncanonical NF-κB signaling. Nat Immunol 2012; 13(11): 1101–9. doi: 10.1038/ni.2423

Zamora C, Cantó E, Vidal S. The dual role of platelets in the cardiovascular risk of chronic inflammation. Front Immunol 2021; 12: 625181. doi: 10.3389/fimmu.2021.625181

Aukrust P, Müller F, Ueland T, Berget T, Aaser E, Brunsvig A, et al. Enhanced levels of soluble and membrane-bound CD40 ligand in patients with unstable angina. Possible reflection of T lymphocyte and platelet involvement in the pathogenesis of acute coronary syndromes. Circulation 1999; 100(6): 614–20. doi: 10.1161/01.CIR.100.6.614

Chaturvedi R, Gupta M, Jain A, Das T, Prashar S. Soluble CD40 ligand: a novel biomarker in the pathogenesis of periodontal disease. Clin Oral Investig 2015; 19(1): 45–52. doi: 10.1007/s00784-014-1216-3

Karnell JL, Rieder SA, Ettinger R, Kolbeck R. Targeting the CD40-CD40L pathway in autoimmune diseases: humoral immunity and beyond. Adv Drug Deliv Rev 2019; 141: 92–103. doi: 10.1016/j.addr.2018.12.005

Wykes M. Why do B cells produce CD40 ligand? Immunol Cell Biol 2003; 81(4): 328–31. doi: 10.1046/j.1440-1711.2003.01171.x

Doublier S, Zennaro C, Musante L, Spatola T, Candiano G, Bruschi M, et al. Soluble CD40 ligand directly alters glomerular permeability and may act as a circulating permeability factor in FSGS. PLoS One 2017; 12(11): e0188045. doi: 10.1371/journal.pone.0188045

Lamine LB, Turki A, Al-Khateeb G, Sellami N, Amor HB, Sarray S, et al. Elevation in circulating soluble CD40 ligand concentrations in type 2 diabetic retinopathy and association with its severity. Exp Clin Endocrinol Diabetes 2020; 128(5): 319–24. doi: 10.1055/a-0647-6860

Prasad KS, Andre P, He M, Bao M, Manganello J, Phillips DR. Soluble CD40 ligand induces beta3 integrin tyrosine phosphorylation and triggers platelet activation by outside-in signaling. Proc Natl Acad Sci U S A 2003; 100(21): 12367–71. doi: 10.1073/pnas.2032886100

Field DJ, Aggrey-Amable AA, Blick SK, Ture SK, Johanson A, Cameron SJ, et al. Platelet factor 4 increases bone marrow B cell development and differentiation. Immunol Res 2017; 65(5): 1089–94. doi: 10.1007/s12026-017-8951-x

Smith CS, Parker L, Shearer WT. Cytokine regulation by platelet-activating factor in a human B cell line. J Immunol 1994; 153(9): 3997–4005. doi: 10.4049/jimmunol.153.9.3997

Nguer CM, Pellegrini O, Galanaud P, Benveniste J, Thomas Y, Richard Y. Regulation of paf-acether receptor expression in human B cells. J Immunol 1992; 149(8): 2742–8. doi: 10.4049/jimmunol.149.8.2742

Sun SC. The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol 2017; 17(9): 545–58. doi: 10.1038/nri.2017.52

Taniguchi K, Karin M. NF-κB, inflammation, immunity and cancer: coming of age. Nat Rev Immunol 2018; 18(5): 309–24. doi: 10.1038/nri.2017.142

Zhao B, Barrera Luis A, Ersing I, Willox B, Schmidt Stefanie CS, Greenfeld H, et al. The NF-κB genomic landscape in lymphoblastoid B cells. Cell Rep 2014; 8(5): 1595–606. doi: 10.1016/j.celrep.2014.07.037

Sasaki Y, Iwai K. Roles of the NF-κB pathway in B-lymphocyte biology. Curr Top Microbiol Immunol 2016; 393: 177–209. doi: 10.1007/82_2015_479

How to Cite
JohannesN., & MaungaP. (2023). Aspirin alleviates the symptoms of immunoglobulin A nephropathy via suppressing platelets-mediated non-canonical NF-κB activation in B cells. STEMedicine, 4(1), e159.
Research articles