TY - JOUR AU - Ziyun Jiang AU - Mingliang Tang PY - 2020/06/21 Y2 - 2024/03/29 TI - Inflammatory events drive neural stem cell migration by elevating stromal-derived factor 1 alpha JF - STEMedicine JA - STEMedicine VL - 1 IS - 3 SE - Research articles DO - 10.37175/stemedicine.v1i3.59 UR - https://stemedicine.org/index.php/stem/article/view/59 AB - Background: Ischemic stroke is the most common cause of ischemia-related death globally. Brain injuries due to stroke and trauma are typically followed by inflammation reactions within the central nervous system (CNS). Neural stem cell (NSC)-based therapeutic strategies show great potential for treating stroke and ischemia-mediated brain injuries, and migration of NSCs is a critical step involved in NSC-based therapy.Methods: In order to examine the effects of microglial activation upon ischemia and stroke on NSC behaviors, oxygen-glucose deprivation (OGD) in vitro model was established for mimicking in vivo stroke and ischemia pathological conditions in this study. By combining of enzyme-linked immunosorbent assay, migration assay, Western blot and immunostaining, we found that OGD insult induced microglial activation by releasing cytokines and chemokines.Results: The conditioned media (CM) of OGD-treated groups impaired the proliferation and capability of neurosphere formation. Moreover, we found the stromal cell-derived factor 1α/CXC chemokine receptor 4 (CXCR4) pathway was an active player that facilitated the migration of NSCs, since a CXCR4 specific antagonist AMD3100 was able to impair NSC migration both in vitro and in vivo.Conclusion: The current study presents a potential interaction between NSC behaviors and microglial activation underlying brain injuries, such as ischemia and stroke. More importantly, we reveal the underlying mechanisms of microglia-induced NSC migration under OGD conditions and it should be beneficial to stem cell-based therapies to treat acute brain injuries. ER -