Plasmonic nanoassemblies for surface-enhanced Raman scattering-based biodetection and biomedical theranostics

  • Yi Chen State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; and Southeast University-Monash University Joint Research Institute, Suzhou, China
  • Yu Bai State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; and Southeast University-Monash University Joint Research Institute, Suzhou, China
  • Heng Zhang State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; and Southeast University-Monash University Joint Research Institute, Suzhou, China
  • Zheng Zhou State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China; and Southeast University-Monash University Joint Research Institute, Suzhou, China
Keywords: plasmonic, nanoassemblies, surface-enhanced Raman scattering, biodetection, theranostics

Abstract

Plasmonic nanoassemblies are well-defined organizing of elementary metallic nanocrystal building blocks into ordered architectures across multiple scales, which constituents an exciting route to engineer nanomaterials structures with novel properties. Such nanoassemblies can accurately enhance, guide, and switch electromagnetic field at the nanoscale, which is shaping new-generation technologies with a plethora of applications, such as ultrasensitive bimolecular sensors, cancer diagnostics, and photothermal therapy (PTT), to name a few. In this review, we mainly focus on the plasmonic nanoassemblies, including the structure design, property control, and biomedical applications. The guiding principles have been first clarified with design rules being suggested. Then, the methodologies for fabrication of surface-enhanced Raman scattering-based (SERS-based) biodetection devices have been discussed. Finally, we summarized the PTT by using the plasmonic nanoassemblies as bioprobes for theranostics. Based on the facile yet efficient fabrication methods, high-efficient optoelectronic properties, and high performance in biomedical applications, we firmly believe that the plasmonic nanoassemblies can be integrated with portable devices for next-generation biosensors and biomedical theranostics.

Downloads

Download data is not yet available.

References

Alivisatos AP, Johnsson KP, Peng X, Wilson TE, Loweth CJ, Bruchez MP, Jr, et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 1996; 382: 609–11. doi: 10.1038/382609a0

Maye MM, Kumara MT, Nykypanchuk D, Sherman WB, Gang O. Switching binary states of nanoparticle superlattices and dimer clusters by DNA strands. Nat Nanotechnol 2010; 5: 116–20. doi: 10.1038/nnano.2009.378

Nie Z, Fava D, Kumacheva E, Zou S, Walker GC, Rubinstein M. Self-assembly of metal-polymer analogues of amphiphilic triblock copolymers. Nat Matter 2007; 6(8): 609–14. doi: 10.1038/nmat1954

Liu K, Nie Z, Zhao N, Li W, Rubinstein M, Kumacheva E. Step-growth polymerization of inorganic nanoparticles. Science 2010; 329(5988): 197–200. doi: 10.1126/science.1189457

Pileni M-P. Self-assembly of inorganic nanocrystals: fabrication and collective intrinsic properties. Acc Chem Res 2007; 40(8): 685–93. doi: 10.1021/ar6000582

Heitsch AT, Patel RN, Goodfellow BW, Smilgies D-M, Korgel BA. GISAXS characterization of order in hexagonal monolayers of FePt nanocrystals. J Phys Chem C 2010; 114(34): 14427–32. doi: 10.1021/jp1047979

Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, et al. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater 2010; 9: 913–17. doi: 10.1038/nmat2870

Park SY, Lytton-Jean AKR, Lee B, Weigand S, Schatz GC, Mirkin CA. DNA-programmable nanoparticle crystallization. Nature 2008; 451: 553–6. doi: 10.1038/nature06508

Nykypanchuk D, Maye MM, van der Lelie D, Gang O. DNA-guided crystallization of colloidal nanoparticles. Nature 2008; 451: 549–52. doi: 10.1038/nature06560

Cheng WL, Hartman MR, Smilgies D-M, Long R, Campolongo MJ, Li R, et al. Probing in real time the soft crystallization of DNA-capped nanoparticles. Angew Chem Int Ed 2010; 49: 380–4. doi: 10.1002/anie.200904066

Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML. Plasmonics for extreme light concentration and manipulation. Nat Matter 2010; 9(3): 193–204. doi: 10.1038/nmat2630

Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. ChemPhysChem 2000; 1(1): 18–52. doi: 10.1002/1439-7641(20000804)1:1%3C18::AID-CPHC18%3E3.0.CO;2-L

Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 2006; 311(5758): 189–93. doi: 10.1126/science.1114849

Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nat Matter 2008; 7(6): 442–53. doi: 10.1038/nmat2162

Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Matter 2003; 2(4): 229–32. doi: 10.1038/nmat852

Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008; 41(12): 1842–51. doi: 10.1021/ar800150g

Yavuz MS, Cheng Y, Chen J, Cobley CM, Zhang Q, Rycenga M, et al. Gold nanocages covered by smart polymers for controlled release with near-infrared light. Nat Matter 2009; 8(12): 935–9. doi: 10.1038/nmat2564

Prodan E, Radloff C, Halas NJ, Nordlander P. A hybridization model for the plasmon response of complex nanostructures. Science 2003; 302(5644): 419–22. doi: 10.1126/science.1089171

Maye MM, Nykypanchuk D, Cuisinier M, van der Lelie D, Gang O. Stepwise surface encoding for high-throughput assembly of nanoclusters. Nat Mater 2009; 8(5): 388–91. doi: 10.1038/nmat2421

Lim D-K, Jeon K-S, Kim HM, Nam J-M, Suh YD. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 2010; 9(1): 60–7. doi: 10.1038/nmat2596

Xu X, Rosi NL, Wang Y, Huo F, Mirkin CA. Asymmetric functionalization of gold nanoparticles with oligonucleotides. J Am Chem Soc 2006; 128(29): 9286–7. doi: 10.1021/ja061980b

Zhang H, Wang R, Sikdar D, Wu L, Sun J, Gu N, et al. Plasmonic superlattice membranes based on bimetallic nano-sea urchins as high-performance label-free surface-enhanced Raman spectroscopy platforms. ACS Sens 2022; 7(2): 622–31. doi: 10.1021/acssensors.1c02556

Chen Y, Yin H, Sikdar D, Yan L, Zhou Z, Sun J, et al. Gold nanopolyhedron-based superlattice sheets as flexible surface-enhanced Raman scattering sensors for detection of 4-aminothiophenol. ACS Appli Nano Mater 2021; 4(11): 12498–505. doi: 10.1021/acsanm.1c02884

Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir 1996; 12(3): 788–800. doi: 10.1021/la9502711

Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 1908; 330(3): 377–445. doi: 10.1002/andp.19083300302

Liz-Marzán LM. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2005; 22(1): 32–41. doi: 10.1021/la0513353

Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 2002; 107(3): 668–77. doi: 10.1021/jp026731y

Tan SJ, Campolongo MJ, Luo D, Cheng WL. Building plasmonic nanostructures with DNA. Nat Nanotech 2011; 6: 268–76. doi: 10.1038/nnano.2011.49

Link S, El-Sayed MA. Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B 1999; 103(21): 4212–17. doi: 10.1021/jp984796o

Rodriguez-Fernandez D, Langer J, Henriksen-Lacey M, Liz-Marzan LM. Hybrid Au–SiO2 core–satellite colloids as switchable SERS tags. Chem Mater 2015; 27(7): 2540–5. doi: 10.1021/acs.chemmater.5b00128

Rao VK, Radhakrishnan T. Tuning the SERS response with Ag-Au nanoparticle-embedded polymer thin film substrates. ACS Appl Mater Interf 2015; 7(23): 12767–73. doi: 10.1021/acsami.5b04180

Bai T, Sun J, Che R, Xu L, Yin C, Guo Z, et al. Controllable preparation of core–shell Au–Ag nanoshuttles with improved refractive index sensitivity and SERS activity. ACS Appl Mater Interf 2014; 6(5): 3331–40. doi: 10.1021/am405357v

Cui Q, Shen G, Yan X, Li L, Möhwald H, Bargheer M. Fabrication of Au@ Pt multibranched nanoparticles and their application to in situ SERS monitoring. ACS Appl Mater Interf 2014; 6(19): 17075–81. doi: 10.1021/am504709a

Shin H-S, Hong J-Y, Huh S. 2-Thiopheneacetic acid directed synthesis of Au nanorosette as an SERS-active substrate. ACS Appl Mater Interf 2013; 5(4): 1429–35. doi: 10.1021/am302865b

Xie W, Herrmann C, Kömpe K, Haase M, Schlücker S. Synthesis of bifunctional Au/Pt/Au core/shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J Am Chem Soc 2011; 133(48): 19302–5. doi: 10.1021/ja208298q

Sun Z, Du J, Yan L, Chen S, Yang Z, Jing C. Multifunctional Fe3O4@ SiO2–Au satellite structured SERS probe for charge selective detection of food dyes. ACS Appl Mater Interf 2016; 8(5): 3056–62. doi: 10.1021/acsami.5b10230

Sinha G, Depero LE, Alessandri I. Recyclable SERS substrates based on Au-coated ZnO nanorods. ACS Appl Mater Interf 2011; 3(7): 2557–63. doi: 10.1021/am200396n

Zhong L-B, Yin J, Zheng Y-M, Liu Q, Cheng X-X, Luo F-H. Self-assembly of Au nanoparticles on PMMA template as flexible, transparent, and highly active SERS substrates. Anal Chem 2014; 86(13): 6262–7. doi: 10.1021/ac404224f

Bekana D, Liu R, Amde M, Liu J-F. Use of polycrystalline ice for assembly of large area Au nanoparticle superstructures as SERS substrates. ACS Appl Mater Interf 2017; 9(1): 513–20. doi: 10.1021/acsami.6b15378

Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q. Double detection of mycotoxins based on SERS labels embedded Ag@ Au core–shell nanoparticles. ACS Appl Mater Interf 2015; 7(39): 21780–6. doi: 10.1021/acsami.5b07804

MacLaughlin CM, Mullaithilaga N, Yang G, Ip SY, Wang C, Walker GC. Surface-enhanced Raman scattering dye-labeled Au nanoparticles for triplexed detection of leukemia and lymphoma cells and SERS flow cytometry. Langmuir 2013; 29(6): 1908–19. doi: 10.1021/la303931c

Jain PK, El-Sayed IH, El-Sayed MA. Au nanoparticles target cancer. Nano Today 2007; 2(1): 18–29. doi: 10.1016/S1748-0132(07)70016-6

Sokolov K, Follen M, Aaron J, Pavlova I, Malpica A, Lotan R, et al. Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 2003; 63(9): 1999–2004.

El-Sayed IH, Huang X, El-Sayed MA. Selective laser photo-thermal therapy of epithelial carcinoma using anti-EGFR antibody conjugated gold nanoparticles. Cancer Lett 2006; 239(1): 129–35. doi: 10.1016/j.canlet.2005.07.035

Huang X, El-Sayed IH, Qian W, El-Sayed MA. Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 2006; 128(6): 2115–20. doi: 10.1021/ja057254a

Yamashita S, Fukushima H, Niidome Y, Mori T, Katayama Y, Niidome T. Controlled-release system mediated by a retro Diels-Alder reaction induced by the photothermal effect of gold nanorods. Langmuir 2011; 27(23): 14621–6. doi: 10.1021/la2036746

Khlebtsov BN, Panfilova EV, Terentyuk GS, Maksimova IL, Ivanov AV, Khlebtsov NG. Plasmonic nanopowders for photothermal therapy of tumors. Langmuir 2012; 28(24): 8994–9002. doi: 10.1021/la300022k

Wu P, Gao Y, Zhang H, Cai C. Aptamer-guided silver-gold bimetallic nanostructures with highly active surface-enhanced Raman scattering for specific detection and near-infrared photothermal therapy of human breast cancer cells. Anal Chem 2012; 84(18): 7692–9. doi: 10.1021/ac3015164

Bagley AF, Hill S, Rogers GS, Bhatia SN. Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 2013; 7(9): 8089–97. doi: 10.1021/nn4033757

Tsai M-F, Chang S-HG, Cheng F-Y, Shanmugam V, Cheng Y-S, Su C-H, et al. Au nanorod design as light-absorber in the first and second biological near-infrared windows for in vivo photothermal therapy. ACS Nano 2013; 7(6): 5330–42. doi: 10.1021/nn401187c

Abadeer NS, Murphy CJ. Recent progress in cancer thermal therapy using gold nanoparticles. J Phys Chem C 2016; 120(9): 4691–716. doi: 10.1021/acs.jpcc.5b11232

Ma N, Jiang YW, Zhang X, Wu H, Myers JN, Liu P, et al. Enhanced radiosensitization of gold nanospikes via hyperthermia in combined cancer radiation and photothermal therapy. ACS Appl Mater Interf 2016; 8(42): 28480–94. doi: 10.1021/acsami.6b10132

Yang K, Zhang S, Zhang G, Sun X, Lee ST, Liu Z. Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett 2010; 10(9): 3318–23. doi: 10.1021/nl100996u

Su S, Wang J, Vargas E, Wei J, Martínez-Zaguilán R, Sennoune SR, et al. Porphyrin immobilized nanographene oxide for enhanced and targeted photothermal therapy of brain cancer. ACS Biomater Sci Eng 2016; 2(8): 1357–66. doi: 10.1021/acsbiomaterials.6b00290

Chen W, Zhang X, Ai F, Yang X, Zhu G, Wang F. Graphitic carbon nanocubes derived from ZIF-8 for photothermal therapy. Inorg Chem 2016; 55(12): 5750–2. doi: 10.1021/acs.inorgchem.6b01013

Hessel CM, Pattani VP, Rasch M, Panthani MG, Koo B, Tunnell JW, et al. Copper selenide nanocrystals for photothermal therapy. Nano Lett 2011; 11(6): 2560–6. doi: 10.1021/nl201400z

Liu J, Zheng X, Yan L, Zhou L, Tian G, Yin W, et al. Bismuth sulfide nanorods as a precision nanomedicine for in vivo multimodal imaging-guided photothermal therapy of tumor. ACS Nano 2015; 9(1): 696–707. doi: 10.1021/nn506137n

Lei Z, Zhu W, Xu S, Ding J, Wan J, Wu P. Hydrophilic MoSe2 nanosheets as effective photothermal therapy agents and their application in smart devices. ACS Appl Mater Interf 2016; 8(32): 20900–8. doi: 10.1021/acsami.6b07326

Zhao P, Ren S, Liu Y, Huang W, Zhang C, He J. PL-W18O49-TPZ nanoparticles for simultaneous hypoxia-activated chemotherapy and photothermal therapy. ACS Appl Mater Interf 2018; 10(4): 3405–13. doi: 10.1021/acsami.7b17323

Zheng M, Zhao P, Luo Z, Gong P, Zheng C, Zhang P, et al. Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS Appl Mater Interf 2014; 6(9): 6709–16. doi: 10.1021/am5004393

Fu G, Liu W, Li Y, Jin Y, Jiang L, Liang X, et al. Magnetic Prussian blue nanoparticles for targeted photothermal therapy under magnetic resonance imaging guidance. Bioconjug Chem 2014; 25(9): 1655–63. doi: 10.1021/bc500279w

Zhang J, Liu S, Hu X, Xie Z, Jing X. Cyanine-curcumin assembling nanoparticles for near-infrared imaging and photothermal therapy. ACS Biomater Sci Eng 2016; 2: 1942–50. doi: 10.1021/acsbiomaterials.6b00315

Lin W, Li Y, Zhang W, Liu S, Xie Z, Jing X. Near-infrared polymeric nanoparticles with high content of cyanine for bimodal imaging and photothermal therapy. ACS Appl Mater Interf 2016; 8(37): 24426–32. doi: 10.1021/acsami.6b07103

Zhou B, Li Y, Niu G, Lan M, Jia Q, Liang Q. Near-infrared organic dye-based nanoagent for the photothermal therapy of cancer. ACS Appl Mater Interf 2016; 8(44): 29899–905. doi: 10.1021/acsami.6b07838

Wang S, Cao Y, Zhang Q, Peng H, Liang L, Li Q, et al. New application of old material: Chinese traditional ink for photothermal therapy of metastatic lymph nodes. ACS Omega 2017; 2(8): 5170–8. doi: 10.1021/acsomega.7b00993

Yoon HJ, Lee HS, Lim JY, Park JH. Liposomal indocyanine green for enhanced photothermal therapy. ACS Appl Mater Interf 2017; 9(7): 5683–91. doi: 10.1021/acsami.6b16801

Lin L, Liang X, Xu Y, Yang Y, Li X, Dai Z. Doxorubicin and indocyanine green loaded hybrid bicelles for fluorescence imaging guided synergetic chemo/photothermal therapy. Bioconjug Chem 2017; 28(9): 2410–19. doi: 10.1021/acs.bioconjchem.7b00407

Melamed JR, Edelstein RS, Day ES. Elucidating the fundamental mechanisms of cell death triggered by photothermal therapy. ACS Nano 2015; 9(1): 6–11. doi: 10.1021/acsnano.5b00021

Aioub M, El-Sayed MA. A real-time surface enhanced Raman spectroscopy study of plasmonic photothermal cell death using targeted gold nanoparticles. J Am Chem Soc 2016; 138(4): 1258–64. doi: 10.1021/jacs.5b10997

Huang Y-F, Sefah K, Bamrungsap S, Chang H-T, Tan W. Selective photothermal therapy for mixed cancer cells using aptamer-conjugated nanorods. Langmuir 2008; 24(20): 11860–5. doi: 10.1021/la801969c

Yi DK, Sun I-C, Ryu J-H, Koo H, Park CW, Youn I-C, et al. Matrix metalloproteinase sensitive gold nanorod for simultaneous bioimaging and photothermal therapy of cancer. Bioconjugate Chem 2010; 21(12): 2173–7. doi: 10.1021/bc100308p

Guo R, Zhang L, Qian H, Li R, Jiang X, Liu B. Multifunctional nanocarriers for cell imaging, drug delivery, and near-IR photothermal therapy. Langmuir 2010; 26(8): 5428–34. doi: 10.1021/la903893n

Mackey MA, Ali MR, Austin LA, Near RD, El-Sayed MA. The most effective gold nanorod size for plasmonic photothermal therapy: theory and in vitro experiments. J Phys Chem B 2014; 118(5): 1319–26. doi: 10.1021/jp409298f

Choi WI, Kim J-Y, Kang C, Byeon CC, Kim YH, Tae G. Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers. ACS Nano 2011; 5(3): 1995–2003. doi: 10.1021/nn103047r

Ren F, Bhana S, Norman DD, Johnson J, Xu L, Baker DL, et al. Gold nanorods carrying paclitaxel for photothermal-chemotherapy of cancer. Bioconjug Chem 2013; 24(3): 376–86. doi: 10.1021/bc300442d

Liu X, Huang N, Li H, Wang H, Jin Q, Ji J. Multidentate polyethylene glycol modified gold nanorods for in vivo near-infrared photothermal cancer therapy. ACS Appl Mater Interf 2014; 6(8): 5657–68. doi: 10.1021/am5001823

Chen J, Liang H, Lin L, Guo Z, Sun P, Chen M, et al. Gold-nanorods-based gene carriers with the capability of photoacoustic imaging and photothermal therapy. ACS Appl Mater Interf 2016; 8(46): 31558–66. doi: 10.1021/acsami.6b10166

Xu C, Yang D, Mei L, Li Q, Zhu H, Wang T. Targeting chemophotothermal therapy of hepatoma by gold nanorods/graphene oxide core/shell nanocomposites. ACS Appl Mater Interf 2013; 5(24): 12911–20. doi: 10.1021/am404714w

Mooney R, Roma L, Zhao D, Van Haute D, Garcia E, Kim SU, et al. Neural stem cell-mediated intratumoral delivery of gold nanorods improves photothermal therapy. ACS Nano 2014; 8(12): 12450–60. doi: 10.1021/nn505147w

Pan L, Liu J, Shi J. Nuclear-targeting gold nanorods for extremely low NIR activated photothermal therapy. ACS Appl Mater Interf 2017; 9(19): 15952–61. doi: 10.1021/acsami.7b03017

Bhana S, Lin G, Wang L, Starring H, Mishra SR, Liu G, et al. Near-infrared-absorbing gold nanopopcorns with iron oxide cluster core for magnetically amplified photothermal and photodynamic cancer therapy. ACS Appl Mater Interf 2015; 7(21): 11637–47. doi: 10.1021/acsami.5b02741

Van de Broek B, Devoogdt N, D’Hollander A, Gijs H-L, Jans K, Lagae L, et al. Specific cell targeting with nanobody conjugated branched gold nanoparticles for photothermal therapy. ACS Nano 2011; 5(6): 4319–28. doi: 10.1021/nn1023363

Liu Y, Yang M, Zhang J, Zhi X, Li C, Zhang C, et al. Human induced pluripotent stem cells for tumor targeted delivery of gold nanorods and enhanced photothermal therapy. ACS Nano 2016; 10(2): 2375–85. doi: 10.1021/acsnano.5b07172

Li X, Zhou J, Dong X, Cheng WY, Duan H, Cheung PCK. In vitro and in vivo photothermal cancer therapeutic effects of gold nanorods modified with mushroom beta-glucan. J Agric Food Chem 2018; 66(16): 4091–8. doi: 10.1021/acs.jafc.8b00292

Li X, Zhou J, Liu C, Xiong Q, Duan H, Cheung PCK. Stable and biocompatible mushroom beta-Glucan modified gold nanorods for cancer photothermal therapy. J Agric Food Chem 2017; 65(43): 9529–36. doi: 10.1021/acs.jafc.7b03895

Nam J, Won N, Jin H, Chung H, Kim S. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J Am Chem Soc 2009; 131(38): 13639–45. doi: 10.1021/ja902062j

Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL. Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 2010; 6(6): 745–52. doi: 10.1002/smll.200901557

Wu X, Ming T, Wang X, Wang P, Wang J, Chen J. High-photoluminescence-yield gold nanocubes: for cell imaging and photothermal therapy. ACS Nano 2010; 4(1): 113–20. doi: 10.1021/nn901064m

Panikkanvalappil SR, Hooshmand N, El-Sayed MA. Intracellular assembly of nuclear-targeted gold nanosphere enables selective plasmonic photothermal therapy of cancer by shifting their absorption wavelength toward near-infrared region. Bioconjug Chem 2017; 28(9): 2452–60. doi: 10.1021/acs.bioconjchem.7b00427

Wang S, Chen KJ, Wu TH, Wang H, Lin WY, Ohashi M, et al. Photothermal effects of supramolecularly assembled gold nanoparticles for the targeted treatment of cancer cells. Angew Chem Int Ed Engl 2010; 49(22): 3777–81. doi: 10.1002/anie.201000062

Jung S, Nam J, Hwang S, Park J, Hur J, Im K, et al. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Anal Chem 2013; 85(16): 7674–81. doi: 10.1021/ac401390m

Oh MH, Yu JH, Kim I, Nam YS. Genetically programmed clusters of gold nanoparticles for cancer cell-targeted photothermal therapy. ACS Appl Mater Interf 2015; 7(40): 22578–86. doi: 10.1021/acsami.5b07029

Rengan AK, Bukhari AB, Pradhan A, Malhotra R, Banerjee R, Srivastava R, et al. In vivo analysis of biodegradable liposome gold nanoparticles as efficient agents for photothermal therapy of cancer. Nano Lett 2015; 15(2): 842–8. doi: 10.1021/nl5045378

Sun M, Peng D, Hao H, Hu J, Wang D, Wang K, et al. Thermally triggered in situ assembly of gold nanoparticles for cancer multimodal imaging and photothermal therapy. ACS Appl Mater Interf 2017; 9(12): 10453–60. doi: 10.1021/acsami.6b16408

Lu W, Singh AK, Khan SF, Senapati D, Yu H, Ray PC. Gold nano-popcorn-based targeted diagnosis, nanotherapy treatment, and in situ monitoring of photothermal therapy response of prostate cancer cells using surface-enhanced Raman spectroscopy. J Am Chem Soc 2010; 132(51): 18103–14. doi: 10.1021/ja104924b

Barbosa S, Topete A, Alatorre-Meda M, Villar-Alvarez EM, Pardo A, Alvarez-Lorenzo C, et al. Targeted combinatorial therapy using gold nanostars as theranostic platforms. J Phys Chem C 2014; 118(45): 26313–23. doi: 10.1021/jp505979e

Pérez-Hernández M, del Pino P, Mitchell SG, Moros M, Stepien G, Pelaz B, et al. Dissecting the molecular mechanism of apoptosis during photothermal therapy using gold nanoprisms. ACS Nano 2015; 9(1): 52–61. doi: 10.1021/nn505468v

Tian Y, Zhang Y, Teng Z, Tian W, Luo S, Kong X, et al. pH-Dependent transmembrane activity of peptide-functionalized gold nanostars for computed tomography/photoacoustic imaging and photothermal therapy. ACS Appl Mater Interf 2017; 9(3): 2114–22. doi: 10.1021/acsami.6b13237

Wu X, Zhou L, Su Y, Dong CM. Plasmonic, targeted, and dual drugs-loaded polypeptide composite nanoparticles for synergistic cocktail chemotherapy with photothermal therapy. Biomacromolecules 2016; 17(7): 2489–501. doi: 10.1021/acs.biomac.6b00721

Xuan M, Shao J, Dai L, Li J, He Q. Macrophage cell membrane camouflaged Au nanoshells for in vivo prolonged circulation life and enhanced cancer photothermal therapy. ACS Appl Mater Interf 2016; 8(15): 9610–18. doi: 10.1021/acsami.6b00853

Yang J, Yao M-H, Jin R-M, Zhao D-H, Zhao Y-D, Liu B. Polypeptide-engineered hydrogel coated gold nanorods for targeted drug delivery and chemo-photothermal therapy. ACS Biomater Sci Eng 2017; 3(10): 2391–8. doi: 10.1021/acsbiomaterials.7b00359

Yi Y, Wang H, Wang X, Liu Q, Ye M, Tan W. A smart, photocontrollable drug release nanosystem for multifunctional synergistic cancer therapy. ACS Appl Mater Interf 2017; 9(7): 5847–54. doi: 10.1021/acsami.6b15414

Reinhard BM, Sheikholeslami S, Mastroianni A, Alivisatos AP, Liphardt J. Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes. Proc Natl Acad Sci U S A 2007; 104(8): 2667–72. doi: 10.1073/pnas.0607826104

Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marzan LM. Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 2011; 3(4): 1304–15. doi: 10.1039/c0nr00804d

Banholzer MJ, Osberg KD, Li S, Mangelson BF, Schatz GC, Mirkin CA. Silver-based nanodisk codes. ACS Nano 2010; 4(9): 5446–52. doi: 10.1021/nn101231u

Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004; 305(5685): 788–92. doi: 10.1126/science.1096796

Large N, Abb M, Aizpurua J, Muskens OL. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches. Nano Lett 2010; 10(5): 1741–6. doi: 10.1021/nl1001636

Aeschlimann M, Bauer M, Bayer D, Brixner T, Garcia de Abajo FJ, Pfeiffer W, et al. Adaptive subwavelength control of nano-optical fields. Nature 2007; 446(7133): 301–4. doi: 10.1038/nature05595

Dadosh T, Gordin Y, Krahne R, Khivrich I, Mahalu D, Frydman V, et al. Measurement of the conductance of single conjugated molecules. Nature 2005; 436(7051): 677–80. doi: 10.1038/nature03898

Published
2022-10-10
How to Cite
ChenY., BaiY., ZhangH., & ZhouZ. (2022). Plasmonic nanoassemblies for surface-enhanced Raman scattering-based biodetection and biomedical theranostics. STEMedicine, 3(4), e147. https://doi.org/10.37175/stemedicine.v3i4.147
Section
Review articles