The Composition of chrysanthemum extracts and their pharmacological functions

  • Wan-Li Liang Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China; School of Pharmaceutical sciences, South-Central University for Nationalities, Wuhan, 430064, China.
  • Dan Gong Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China; School of Pharmaceutical sciences, South-Central University for Nationalities, Wuhan, 430064, China.
  • Wei Kevin Zhang Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China; School of Pharmaceutical sciences, South-Central University for Nationalities, Wuhan, 430064, China.
Keywords: Chrysanthemum extracts, Flavonoids, Volatile oils, Organic acids, Polysaccharides

Abstract

Chrysanthemum is a widely planted cash crop worldwide, due to its high ornamental and medicinal values. In addition, as a frequently used material in traditional Chinese medicine, studies have revealed that chrysanthemum extracts are complicated mixtures of flavonoids, volatile oils, organic acids, polysaccharides and other minor components, which possess pharmacological effects against many pathological conditions such as toxin-induced cell loss, bacterial infection-induced inflammation, reactive oxygen species-induced oxidative stress and tumor formation induced by various stimuli. In this mini review, we collected and summarized the current understanding on the composition and pharmacology of chrysanthemum extracts originally published in both Chinese and English, and aimed to broaden the readership, in order to build up the basis for eliciting more valuable investigations in this topic.

Downloads

Download data is not yet available.

References

Ohmiya A. Molecular mechanisms underlying the diverse array of petal colors in chrysanthemum flowers. Breed Sci. 2018;68(1):119-27.

Teixeira da Silva JA. Chrysanthemum: advances in tissue culture, cryopreservation, postharvest technology, genetics and transgenic biotechnology. Biotechnol Adv. 2003;21(8):715-66.

Su J, Jiang J, Zhang F, Liu Y, Ding L, Chen S, et al. Current achievements and future prospects in the genetic breeding of chrysanthemum: a review. Hortic Res. 2019;6:109.

He J, Chen L, Chu B, Zhang C. Determination of total polysaccharides and total flavonoids in chrysanthemum morifolium using near-infrared hyperspectral imaging and multivariate analysis. Molecules. 2018;23(9).

Li Y, Yang P, Luo Y, Gao B, Sun J, Lu W, et al. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties. Food Chem. 2019;286:8-16.

Wang Y, Xu Z, Wen X, Li M, Pang S, Huang Y, et al. The formation and bioactivities of green substances in Chrysanthemum morifolium tea. Food Chem. 2019;286:268-74.

Yang L, Aobulikasimu.Nuerbiye, Cheng P, Wang JH, Li H. Analysis of floral volatile components and antioxidant activity of different varieties of chrysanthemum morifolium. Molecules. 2017;22(10).

Zhu ZY, Pan LC, Yun T, Zhang YM. Structural analysis and antioxidant activity of the glycoside from Imperial Chrysanthemum. Bioorg Med Chem Lett. 2018;28(9):1581-90.

Wang C. [Advances in the study on chemical constituents of Chrysanthemum morifolium Ramat]. Zhong Yao Cai. 2004;27(3):224-6.

Kim IS, Koppula S, Park PJ, Kim EH, Kim CG, Choi WS, et al. Chrysanthemum morifolium Ramat (CM) extract protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity. J Ethnopharmacol. 2009;126(3):447-54.

Lin GH, Lin L, Liang HW, Ma X, Wang JY, Wu LP, et al. Antioxidant action of a Chrysanthemum morifolium extract protects rat brain against ischemia and reperfusion injury. J Med Food. 2010;13(2):306-11.

Zheng CH, Zhang M, Chen H, Wang CQ, Zhang MM, Jiang JH, et al. Luteolin from Flos Chrysanthemi and its derivatives: New small molecule Bcl-2 protein inhibitors. Bioorg Med Chem Lett. 2014;24(19):4672-7.

Yang C, Chen H, Lu S, Zhang M, Tian W, Wang M, et al. Structural modification of luteolin from Flos Chrysanthemi leads to increased tumor cell growth inhibitory activity. Bioorg Med Chem Lett. 2016;26(15):3464-7.

Yang HM, Sun CY, Liang JL, Xu LQ, Zhang ZB, Luo DD, et al.Supercritical-carbon dioxide fluid extract from chrysanthemum indicum enhances anti-tumor effect and Reduces Toxicity of Bleomycin in Tumor-Bearing Mice. Int J Mol Sci. 2017;18(3).

Wang T, Jiang H, Ji Y, Xu J. [Anti-oxidation effect of water extract of Flos chrysanthemi on heart and brain in vivo and in vitro]. Zhong Yao Cai. 2001;24(2):122-4.

He Y, Du Z, Lv H, Jia Q, Tang Z, Zheng X, et al. Green synthesis of silver nanoparticles by Chrysanthemum morifolium Ramat. extract and their application in clinical ultrasound gel. Int J Nanomedicine. 2013;8:1809-15.

Arokiyaraj S, Arasu MV, Vincent S, Prakash NU, Choi SH, Oh YK, et al. Rapid green synthesis of silver nanoparticles from Chrysanthemum indicum L and its antibacterial and cytotoxic effects: an in vitro study. Int J Nanomedicine. 2014;9:379-88.

Tao JH, Duan JA, Qian YY, Qian DW, Guo JM. Investigation of the interactions between Chrysanthemum morifolium flowers extract and intestinal bacteria from human and rat. Biomed Chromatogr. 2016;30(11):1807-19.

Lin L, Mao X, Sun Y, Rajivgandhi G, Cui H. Antibacterial properties of nanofibers containing chrysanthemum essential oil and their application as beef packaging. Int J Food Microbiol. 2019;292:21-30.

Cui Y, Wang X, Xue J, Liu J, Xie M. Chrysanthemum morifolium extract attenuates high-fat milk-induced fatty liver through peroxisome proliferator-activated receptor alpha-mediated mechanism in mice. Nutr Res. 2014;34(3):268-75.

Tsai PJ, Chang ML, Hsin CM, Chuang CC, Chuang LT, Wu WH. Antilipotoxicity Activity of Osmanthus fragrans and Chrysanthemum morifolium Flower Extracts in Hepatocytes and Renal Glomerular Mesangial Cells. Mediators Inflamm. 2017;2017:4856095.

Cha JY, Nepali S, Lee HY, Hwang SW, Choi SY, Yeon JM, et al. Chrysanthemum indicum L. ethanol extract reduces high-fat diet-induced obesity in mice. Exp Ther Med. 2018;15(6):5070-6.

Xu WB, Guo QS, Li YN, Wang T. [Comparative study on internal quality of various Chrysanthemum morifolium]. Zhongguo Zhong Yao Za Zhi. 2005;30(21):1645-8.

Xie YY, Qu JL, Wang QL, Wang Y, Yoshikawa M, Yuan D. Comparative evaluation of cultivars of Chrysanthemum morifolium flowers by HPLC-DAD-ESI/MS analysis and antiallergic assay. J Agric Food Chem. 2012;60(51):12574-83.

Xia DZ, Lv GY, Yu XF, Wang HM, Yang Q. [Antagonism of total flavonoids from Chrysanthemum morifolium against lead induced oxidative injury in mice]. Zhongguo Zhong Yao Za Zhi. 2008;33(23):2803-8.

Zhang J, Zhang L, Li J, Cheng W, Peng L, Zhang Q. [Effects of total flavonoids of Chrysanthemum indicum on free radical in adjuvant arthritic rats]. Zhongguo Zhong Yao Za Zhi. 2010;35(3):344-7.

Li G, Zhang H, Li Y, Wang Y. [Protection of vascular endothelial cells from high glucose injury induced by quercetin]. Zhong Yao Cai. 2002;25(4):268-70.

Shahzad H, Giribabu N, Sekaran M, Salleh N. Quercetin Induces Dose-Dependent Differential Morphological and Proliferative Changes in Rat Uteri in the Presence and in the Absence of Estrogen. J Med Food. 2015;18(12):1307-16.

Liu YH, Mou X, Zhou DY, Zhou DY, Shou CM. Extraction of flavonoids from Chrysanthemum morifolium and antitumor activity in vitro. Exp Ther Med. 2018;15(2):1203-10.

Huang CS, Lii CK, Lin AH, Yeh YW, Yao HT, Li CC, et al. Protection by chrysin, apigenin, and luteolin against oxidative stress is mediated by the Nrf2-dependent up-regulation of heme oxygenase 1 and glutamate cysteine ligase in rat primary hepatocytes. Arch Toxicol. 2013;87(1):167-78.

Wang H, Luo Y, Qiao T, Wu Z, Huang Z. Luteolin sensitizes the antitumor effect of cisplatin in drug-resistant ovarian cancer via induction of apoptosis and inhibition of cell migration and invasion. J Ovarian Res. 2018;11(1):93.

Aziz N, Kim MY, Cho JY. Anti-inflammatory effects of luteolin: A review of in vitro, in vivo, and in silico studies. J Ethnopharmacol. 2018;225:342-58.

Kim JS, Jobin C. The flavonoid luteolin prevents lipopolysaccharide-induced NF-kappaB signalling and gene expression by blocking IkappaB kinase activity in intestinal epithelial cells and bone-marrow derived dendritic cells. Immunology. 2005;115(3):375-87.

Jang TY, Jung AY, Kyung TS, Kim DY, Hwang JH, Kim YH. Anti-allergic effect of luteolin in mice with allergic asthma and rhinitis. Cent Eur J Immunol. 2017;42(1):24-9.

Hu CQ, Chen K, Shi Q, Kilkuskie RE, Cheng YC, Lee KH. Anti-AIDS agents, 10. Acacetin-7-O-beta-D-galactopyranoside, an anti-HIV principle from Chrysanthemum morifolium and a structure-activity correlation with some related flavonoids. J Nat Prod. 1994;57(1):42-51.

Lee JS, Kim HJ, Lee YS. A new anti-HIV flavonoid glucuronide from Chrysanthemum morifolium. Planta Med. 2003;69(9):859-61.

Chen X, Tan X, Tanaka K, Bi K. [Study of the chemical components of volatile oil from Flos chrysanthemum indici by gas chromatography-mass spectrometry]. Se Pu. 2005;23(2):213.

Hassanpouraghdam MB. Flowerhead volatile oil composition of soilless culture-grown Chrysanthemum balsamita L. Nat Prod Res. 2009;23(7):672-7.

Yao W, Zhang L, Hua Y, Ji P, Li P, Li J, et al. The investigation of anti-inflammatory activity of volatile oil of Angelica sinensis by plasma metabolomics approach. Int Immunopharmacol. 2015;29(2):269-77.

Ashour MM, Tahir KEHE, Morsi MG, Aba-Alkhail NAJNPE. Effect of the volatile oil of Nigella sativa seeds and its components on body temperature of mice: elucidation of the mechanisms of action. Nat Prod Sci. 2006;12(1):14-8.

Plaingam W, Sangsuthum S, Angkhasirisap W, Tencomnao T. Kaempferia parviflora rhizome extract and Myristica fragrans volatile oil increase the levels of monoamine neurotransmitters and impact the proteomic profiles in the rat hippocampus: Mechanistic insights into their neuroprotective effects. J Tradit Complement Med. 2017;7(4):538-52.

Clifford MN, Wu W, Kirkpatrick J, Kuhnert N. Profiling the chlorogenic acids and other caffeic acid derivatives of herbal chrysanthemum by LC-MSn. J Agric Food Chem. 2007;55(3):929-36.

Tsevegsuren N, Fujimoto K, Christie WW, Endo Y. Occurrence of a novel cis,cis,cis-octadeca-3,9,12-trienoic (Z,Z,Z-octadeca-3,9,12-trienoic) acid in Chrysanthemum (tanacetum) zawadskii herb. (Compositae) seed oil. Lipids. 2003;38(5):573-8.

Li Z, Chen Z, Liao L, Lin S. [Determination of chlorogenic acid in chrysanthemum morifolium Ramat.flower]. Zhongguo Zhong Yao Za Zhi. 1999;24(6):329-30, 81.

Hwang SJ, Kim YW, Park Y, Lee HJ, Kim KW. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm Res. 2014;63(1):81-90.

Yamagata K, Izawa Y, Onodera D, Tagami M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol Cell Biochem. 2018;441(1-2):9-19.

Xie YY, Yuan D, Yang JY, Wang LH, Wu CF. Cytotoxic activity of flavonoids from the flowers of Chrysanthemum morifolium on human colon cancer Colon205 cells. J Asian Nat Prod Res. 2009;11(9):771-8.

Zheng Y, Wang XS, Fang J. Two acidic polysaccharides from the flowers of Chrysanthemum morifolium. J Asian Nat Prod Res. 2006;8(3):217-22.

Du N, Tian W, Zheng D, Zhang X, Qin P. Extraction, purification and elicitor activities of polysaccharides from Chrysanthemum indicum. Int J Biol Macromol. 2016;82:347-54.

Chai Y, Wang G, Fan L, Zhao M. A proteomic analysis of mushroom polysaccharide-treated HepG2 cells. Sci Rep. 2016;6:23565.

Yang L, Wei DD, Chen Z, Wang JS, Kong LY. Reversal of multidrug resistance in human breast cancer cells by Curcuma wenyujin and Chrysanthemum indicum. Phytomedicine. 2011;18(8-9):710-8.

Cheng H, Cao Y. [Determination of hydroxyl radical in CuSO4-vitamin C reaction system and scavenging activities of Chrysanthemum using capillary electrophoresis with electrochemical detection]. Se Pu. 2007;25(5):681-5.

Published
2020-12-16
How to Cite
LiangW.-L., GongD., & ZhangW. K. (2020). The Composition of chrysanthemum extracts and their pharmacological functions. STEMedicine, 2(5), e69. https://doi.org/10.37175/stemedicine.v2i5.69
Section
Review articles