Practical applications of atomic force microscopy in biomedicine

  • Nicola Galvanetto International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy; Department of Biochemistry and Department of Physics, University of Zurich, 8057 Zurich, Switzerland.
Keywords: Atomic force microscopy, Cell membranes, Membrane proteins, Unroofing, Applications


The last thirty years of progress of atomic force microscopy (AFM) applied to living matter is reviewed with a focus on potential uses in drug discovery or screening of patient samples. AFM-based technologies are still at Proof of Concept level - or below, however, they are particularly promising for i) live imaging of unlabeled membrane proteins and ii) nanomechanical screening of biological samples, e.g. cancer biopsies.


Download data is not yet available.


Binnig G, Quate CF, Gerber Ch. Atomic force microscope. Phys Rev Lett. 1986 Mar 3;56(9):930–3.

McClelland GM, Erlandsson R, Chiang S. Atomic force microscopy: general principles and a new implementation. In: Thompson D.O., Chimenti D.E. (eds) Review of Progress in Quantitative Nondestructive Evaluation. 1987, vol 6 A. Springer, Boston, MA.

Chen I-C, Chen L-H, Ye X-R, Daraio C, Jin S, Orme CA, et al. Extremely sharp carbon nanocone probes for atomic force microscopy imaging. Appl Phys Lett. 2006 Apr 10;88(15):153102.

Edwards DT, Faulk JK, LeBlanc M-A, Perkins TT. Force spectroscopy with 9-μs resolution and sub-pN stability by tailoring AFM cantilever geometry. Biophys J. 2017 Dec 19;113(12):2595–600.

Ando T, Uchihashi T, Kodera N. High-speed AFM and applications to biomolecular systems. Annu Rev Biophys. 2013;42(1):393–414.

Kobayashi H, Ogawa M, Alford R, Choyke PL, Urano Y. New strategies for fluorescent probe design in medical diagnostic imaging. Chem Rev. 2010 May 12;110(5):2620–40.

Yguerabide J, Yguerabide EE. Fluorescence spectroscopy in biological and medical research. Int J Radiat Appl Instrum C Radiat Phys Chem. 1988 Jan 1;32(3):457–64.

Liao M, Cao E, Julius D, Cheng Y. Single particle electron cryo-microscopy of a mammalian ion channel. Curr Opin Struct Biol. 2014 Aug 1;27:1–7.

Williams DH, Mitchell T. Latest developments in crystallography and structure-based design of protein kinase inhibitors as drug candidates. Curr Opin Pharmacol. 2002 Oct 1;2(5):567–73.

Yin H, Flynn AD. Drugging membrane protein interactions. Annu Rev Biomed Eng. 2016;18(1):51–76.

Worcester DL, Miller RG, Bryant PJ. Atomic force microscopy of purple membranes. J Microsc.1988;152(3):817–21.

Müller DJ, Schabert FA, Büldt G, Engel A. Imaging purple membranes in aqueous solutions at sub-nanometer resolution by atomic force microscopy. Biophys J.1995 May 1;68(5):1681–6.

Müller DJ, Büldt G, Engel A. Force-induced conformational change of bacteriorhodopsin. J Mol Biol.1995 Jan 1;249(2):239–43.

Rico F, Su C, Scheuring S. Mechanical mapping of single membrane proteins at submolecular resolution. Nano Lett. 2011 Sep 14;11(9):3983–6.

Lin Y-C, Guo YR, Miyagi A, Levring J, MacKinnon R, Scheuring S. Force-induced conformational changes in PIEZO1. Nature. 2019 Sep;573(7773):230–4.

Kodera N, Yamamoto D, Ishikawa R, Ando T. Video imaging of walking myosin V by high-speed atomic force microscopy. Nature. 2010 Nov;468(7320):72–6.

Casuso I, Khao J, Chami M, Paul-Gilloteaux P, Husain M, Duneau J-P, et al. Characterization of the motion of membrane proteins using high-speed atomic force microscopy. Nat Nanotechnol. 2012 Aug;7(8):525–9.

Marchesi A, Gao X, Adaixo R, Rheinberger J, Stahlberg H, Nimigean C, et al. An iris diaphragm mechanism to gate a cyclic nucleotide-gated ion channel. Nat Commun. 2018 Sep 28;9(1):1–11.

Clarke M, Schatten G, Mazia D, Spudich JA. Visualization of actin fibers associated with the cell membrane in amoebae of Dictyostelium discoideum. PNAS. 1975 May 1;72(5):1758–62.

Heuser J. The Production of ‘cell cortices’ for light and electron microscopy. Traffic. 2000 Jul 1;1(7):545–52.

Morone N, Fujiwara T, Murase K, Kasai RS, Ike H, Yuasa S, et al. Three-dimensional reconstruction of the membrane skeleton at the plasma membrane interface by electron tomography. J Cell Biol. 2006 Sep 11;174(6):851–62.

Tanuj Sapra K, Park PS-H, Filipek S, Engel A, Müller DJ, Palczewski K. Detecting molecular interactions that stabilize native bovine rhodopsin. J Mol Biol. 2006 Apr;358(1):255–69.

Whited AM, Park PS-H. Nanodomain organization of rhodopsin in native human and murine rod outer segment disc membranes. Biochim Biophys Acta Biomembr. 2015 Jan 1;1848(1, Part A):26–34.

Usukura E, Narita A, Yagi A, Ito S, Usukura J. An unroofing method to observe the cytoskeleton directly at molecular resolution using atomic force microscopy. Sci Rep. 2016 Jun 7;6:srep27472.

Nermut MV, Williams LD. Freeze-fracturing of monolayers (capillary layers) of cells, membranes and viruses: some technical considerations. J Microsc. 1977 Jul 1;110(2):121–32.

Galvanetto N. Single-cell unroofing: probing topology and nanomechanics of native membranes. Biochim Biophys Acta Biomembr. 2018 Dec;1860(12):2532–8.

Faria EC, Ma N, Gazi E, Gardner P, Brown M, Clarke NW, et al. Measurement of elastic properties of prostate cancer cells using AFM. Analyst. 2008 Oct 20;133(11):1498–500.

Lulevich V, Zink T, Chen H-Y, Liu F-T, Liu G. Cell mechanics using atomic force microscopy-based single-cell compression. Langmuir. 2006 Sep 1;22(19):8151–5.

Xu W, Mezencev R, Kim B, Wang L, McDonald J, Sulchek T. Cell stiffness is a biomarker of the metastatic potential of ovarian cancer cells. PLoS One. 2012 Oct;7(10):e46609.

Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, et al. The nanomechanical signature of breast cancer. Nat Nanotechnol. 2012 Nov;7(11):757–65.

Cross SE, Jin Y-S, Rao J, Gimzewski JK. Nanomechanical analysis of cells from cancer patients. Nat Nanotechnol. 2007 Dec;2(12):780–3.

Yango A, Schäpe J, Rianna C, Doschke H, Radmacher M. Measuring the viscoelastic creep of soft samples by step response AFM. Soft Matter. 2016 Oct 12;12(40):8297–306.

Rigato A, Miyagi A, Scheuring S, Rico F. High-frequency microrheology reveals cytoskeleton dynamics in living cells. Nat Phys. 2017 Aug;13(8):771–5.

Dufrêne YF, Boland T, Schneider JW, Barger WR, Lee GU. Characterization of the physical properties of model biomembranes at the nanometer scale with the atomic force microscope. Faraday Discuss. 1999;111(0):79–94.

Leonenko ZV, Finot E, Ma H, Dahms TES, Cramb DT. Investigation of temperature-induced phase transitions in DOPC and DPPC phospholipid bilayers using temperature-controlled scanning force microscopy. Biophysical Journal. 2004 Jun 1;86(6):3783–93.

Sullan RMA, Li JK, Hao C, Walker GC, Zou S. Cholesterol-Dependent Nanomechanical Stability of Phase-Segregated Multicomponent Lipid Bilayers. Biophys J. 2010 Jul 21;99(2):507–16.

Gonçalves RP, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S. Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nat Methods. 2006 Oct 22;3(12):nmeth965.

Al-Rekabi Z, Contera S. Multifrequency AFM reveals lipid membrane mechanical properties and the effect of cholesterol in modulating viscoelasticity. PNAS. 2018 Mar 13;115(11):2658–63.

Anfinsen CB, Redfield RR, Choate WL, Page J, Carroll WR. Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease. J Biol Chem. 1954;207(1):201–10.

Laio A, Parrinello M. Escaping free-energy minima. PNAS. 2002 Oct 1;99(20):12562–6.

Fong S, Hamill SJ, Proctor M, Freund SMV, Benian GM, Chothia C, et al. Structure and stability of an immunoglobulin superfamily domain from twitchin, a muscle protein of the nematode Caenorhabditis elegans. J Mol Biol. 1996 Dec 6;264(3):624–39.

Rief M, Gautel M, Oesterhelt F, Fernandez JM, Gaub HE. Reversible unfolding of individual titin immunoglobulin domains by AFM. Science. 1997;276(5315):1109–1112.

Doi M, Edwards SF. The theory of polymer dynamics. Clarendon Press; 1988. 420 p.

Otten M, Ott W, Jobst MA, Milles LF, Verdorfer T, Pippig DA, et al. From genes to protein mechanics on a chip. Nat Methods. 2014 Nov;11(11):1127–30.

Johnson AE, van Waes MA. The translocon: a dynamic gateway at the ER membrane. Annu Rev Cell Dev Biol. 1999;15:799-842.

Oesterhelt F, Oesterhelt D, Pfeiffer M, Engel A, Gaub HE, Müller DJ. Unfolding pathways of individual bacteriorhodopsins. Science. 2000 Apr 7;288(5463):143–6.

Möller C, Fotiadis D, Suda K, Engel A, Kessler M, Müller DJ. Determining molecular forces that stabilize human aquaporin-1. J Struct Biol. 2003 Jun 1;142(3):369–78.

Kedrov A, Ziegler C, Janovjak H, Kühlbrandt W, Müller DJ. Controlled unfolding and refolding of a single sodium-proton antiporter using atomic force microscopy. J Mol Biol. 2004 Jul 23;340(5):1143–52.

Thoma J, Bosshart P, Pfreundschuh M, Müller DJ. Out but not in: the large transmembrane β-barrel protein FhuA unfolds but cannot refold via β-hairpins. Structure. 2012 Dec 5;20(12):2185–90.

Yu H, Siewny MGW, Edwards DT, Sanders AW, Perkins TT. Hidden dynamics in the unfolding of individual bacteriorhodopsin proteins. Science. 2017 Mar 3;355(6328):945–50.

Serdiuk T, Balasubramaniam D, Sugihara J, Mari SA, Kaback HR, Müller DJ. YidC assists the stepwise and stochastic folding of membrane proteins. Nat Chem Biol. 2016 Nov;12(11):911–7.

Kawamura S, Gerstung M, Colozo AT, Helenius J, Maeda A, Beerenwinkel N, et al. Kinetic, energetic, and mechanical differences between dark-state rhodopsin and opsin. Structure. 2013 Mar 5;21(3):426–37.

Spoerri PM, Sapra KT, Zhang C, Mari SA, Kato HE, Kobilka BK, et al. Conformational plasticity of human protease-activated receptor 1 upon antagonist- and agonist-binding. Structure. 2019 Oct;27(10):1517–1526.

Galvanetto N, Maity S, Ilieva N, Ye Z, Laio A, Torre V. Unfolding and identification of membrane proteins from native cell membranes. bioRxiv. 2019 Sep;26;732933.

Fu W, Zhang W. Hybrid AFM for nanoscale physicochemical characterization: recent development and emerging applications.Small. 2017, 425;1603525.

How to Cite
GalvanettoN. (2020). Practical applications of atomic force microscopy in biomedicine. STEMedicine, 1(2), e15.
Review articles