Regulatory effect of anisotropic structure on cardiomyocyte maturation

  • Yue Xu Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
  • Miao Xiao Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
  • Xiaoyun Li Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
  • Ziyun Jiang Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, China
Keywords: Cardiovascular disease, human pluripotent stem cells, cardiomyocytes, bioengineering, anisotropic structure

Abstract

Cardiovascular disease (CVD) is the leading cause of death worldwide. Due to the limited regenerative capacity of the adult heart, treatments based on human pluripotent stem cells (hPSCs) have become the focus of a great deal of research. Human pluripotent stem cell–derived cardiomyocytes (hPSC-CMs) can provide an ideal cell source for CVD model construction, cardiac tissue repair, and drug cardiotoxicology research. However, the immaturity of hPSC-CMs seriously restricts its clinical application. The maturation of cardiomyocytes depends on the orderly arrangement of myofilaments and the increase of the expression of connexin, so the geometric regulation of bioengineering substrate is one of the keys to the maturation of engineered myocardial tissue. This review focuses on the key indicators of anisotropic structures provided by biomaterials to improve the maturation characteristics of cardiomyocytes, so as to promote the maturation of cardiomyocytes, and looks forward to the development direction in this field.

Downloads

Download data is not yet available.

References

Roth GA, Johnson C, Abajobir A, Abd-Allah F, Abera SF, Abyu G, et al. Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015. J Am Coll Cardiol 2017; 70(1): 1–25. doi: 10.1016/j.jacc.2017.04.052

Savoji H, Mohammadi MH, Rafatian N, Toroghi MK, Wang EY, Zhao Y, et al. Cardiovascular disease models: a game changing paradigm in drug discovery and screening. Biomaterials 2019; 198: 3–26. doi: 10.1016/j.biomaterials.2018.09.036

Awada HK, Hwang MP, Wang Y. Towards comprehensive cardiac repair and regeneration after myocardial infarction: aspects to consider and proteins to deliver. Biomaterials 2016; 82: 94–112. doi: 10.1016/j.biomaterials.2015.12.025

Pan C, Kumar C, Bohl S, Klingmueller U, Mann M. Comparative proteomic phenotyping of cell lines and primary cells to assess preservation of cell type-specific functions. Mol Cell Proteomics 2009; 8(3): 443–50. doi: 10.1074/mcp.M800258-MCP200

Davidson MM, Nesti C, Palenzuela L, Walker WF, Hernandez E, Protas L, et al. Novel cell lines derived from adult human ventricular cardiomyocytes. J Mol Cell Cardiol 2005; 39(1): 133–47. doi: 10.1016/j.yjmcc.2005.03.003

Lodrini AM, Barile L, Rocchetti M, Altomare C. Human induced pluripotent stem cells derived from a cardiac somatic source: insights for an in-vitro cardiomyocyte platform. Int J Mol Sci 2020; 21(2): 507. doi: 10.3390/ijms21020507

Alcon A, Cagavi Bozkulak E, Qyang Y. Regenerating functional heart tissue for myocardial repair. Cell Mol Life Sci 2012; 69(16): 2635–56. doi: 10.1007/s00018-012-0942-4

Gai H, Leung EL, Costantino PD, Aguila JR, Nguyen DM, Fink LM, et al. Generation and characterization of functional cardiomyocytes using induced pluripotent stem cells derived from human fibroblasts. Cell Biol Int 2009; 33(11): 1184–93. doi: 10.1016/j.cellbi.2009.08.008

Itzhaki I, Rapoport S, Huber I, Mizrahi I, Zwi-Dantsis L, Arbel G, et al. Calcium handling in human induced pluripotent stem cell derived cardiomyocytes. PLoS One 2011; 6(4): e18037. doi: 10.1371/journal.pone.0018037

Ma J, Guo L, Fiene SJ, Anson BD, Thomson JA, Kamp TJ, et al. High purity human-induced pluripotent stem cell-derived cardiomyocytes: electrophysiological properties of action potentials and ionic currents. Am J Physiol Heart Circ Physiol 2011; 301(5): H2006–17. doi: 10.1152/ajpheart.00694.2011

Lee YK, Ng KM, Lai WH, Chan YC, Lau YM, Lian Q, et al. Calcium homeostasis in human induced pluripotent stem cell-derived cardiomyocytes. Stem Cell Rev Rep 2011; 7(4): 976–86. doi: 10.1007/s12015-011-9273-3

Murry CE, MacLellan WR. Stem cells and the heart-the road ahead. Science 2020; 367(6480): 854–5. doi: 10.1126/science.aaz3650

Tulloch NL, Muskheli V, Razumova MV, Korte FS, Regnier M, Hauch KD, et al. Growth of engineered human myocardium with mechanical loading and vascular coculture. Circ Res 2011; 109(1): 47–59. doi: 10.1161/CIRCRESAHA.110.237206

Godier-Furnemont AF, Tiburcy M, Wagner E, Dewenter M, Lammle S, El-Armouche A, et al. Physiologic force-frequency response in engineered heart muscle by electromechanical stimulation. Biomaterials 2015; 60: 82–91. doi: 10.1016/j.biomaterials.2015.03.055

Scuderi GJ, Butcher J. Naturally engineered maturation of cardiomyocytes. Front Cell Dev Biol 2017; 5: 50. doi: 10.3389/fcell.2017.00050

Moroni F, Mirabella T. Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 2014; 3(1): 1–20.

Napiwocki BN, Stempien A, Lang D, Kruepke RA, Kim G, Zhang J, et al. Micropattern platform promotes extracellular matrix remodeling by human PSC-derived cardiac fibroblasts and enhances contractility of co-cultured cardiomyocytes. Physiol Rep 2021; 9(19): e15045. doi: 10.14814/phy2.15045

Yang X, Pabon L, Murry CE. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes. Circ Res 2014; 114(3): 511–23. doi: 10.1161/CIRCRESAHA.114.300558

Kyle DJ, Oikonomou A, Hill E, Bayat A. Development and functional evaluation of biomimetic silicone surfaces with hierarchical micro/nano-topographical features demonstrates favourable in vitro foreign body response of breast-derived fibroblasts. Biomaterials 2015; 52: 88–102. doi: 10.1016/j.biomaterials.2015.02.003

Napiwocki BN, Lang D, Stempien A, Zhang J, Vaidyanathan R, Makielski JC, et al. Aligned human cardiac syncytium for in vitro analysis of electrical, structural, and mechanical readouts. Biotechnol Bioeng 2021; 118(1): 442–52. doi: 10.1002/bit.27582

Wang J, Chen A, Lieu DK, Karakikes I, Chen G, Keung W, et al. Effect of engineered anisotropy on the susceptibility of human pluripotent stem cell-derived ventricular cardiomyocytes to arrhythmias. Biomaterials 2013; 34(35): 8878–86. doi: 10.1016/j.biomaterials.2013.07.039

Kim DH, Lipke EA, Kim P, Cheong R, Thompson S, Delannoy M, et al. Nanoscale cues regulate the structure and function of macroscopic cardiac tissue constructs. Proc Natl Acad Sci U S A 2010; 107(2): 565–70. doi: 10.1073/pnas.0906504107

Feaster TK, Cadar AG, Wang L, Williams CH, Chun YW, Hempel JE, et al. Matrigel mattress: a method for the generation of single contracting human-induced pluripotent stem cell-derived cardiomyocytes. Circ Res 2015; 117(12): 995–1000. doi: 10.1161/CIRCRESAHA.115.307580

Oyunbaatar NE, Lee DH, Patil SJ, Kim ES, Lee DW. Biomechanical characterization of cardiomyocyte using PDMS pillar with microgrooves. Sensors (Basel) 2016; 16(8): 1258. doi: 10.3390/s16081258

Shao Y, Fu J. Integrated micro/nanoengineered functional biomaterials for cell mechanics and mechanobiology: a materials perspective. Adv Mater 2014; 26(10): 1494–533. doi: 10.1002/adma.201304431

Carson D, Hnilova M, Yang X, Nemeth CL, Tsui JH, Smith AS, et al. Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells. ACS Appl Mater Interfaces 2016; 8(34): 21923–32. doi: 10.1021/acsami.5b11671

Rao C, Prodromakis T, Kolker L, Chaudhry UA, Trantidou T, Sridhar A, et al. The effect of microgrooved culture substrates on calcium cycling of cardiac myocytes derived from human induced pluripotent stem cells. Biomaterials 2013;34(10):2399–411. doi: 10.1016/j.biomaterials.2012.11.055

Sun Y, Weng S, Fu J. Microengineered synthetic cellular microenvironment for stem cells. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(4): 414–27. doi: 10.1002/wnan.1175

Ribeiro AJ, Zaleta-Rivera K, Ashley EA, Pruitt BL. Stable, covalent attachment of laminin to microposts improves the contractility of mouse neonatal cardiomyocytes. ACS Appl Mater Interfaces 2014; 6(17): 15516–26. doi: 10.1021/am5042324

Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A. Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev 2013; 113(5): 3297–328. doi: 10.1021/cr300426x

Hosseinkhani H, Hosseinkhani M, Hattori S, Matsuoka R, Kawaguchi N. Micro and nano-scale in vitro 3D culture system for cardiac stem cells. J Biomed Mater Res A 2010; 94(1): 1–8. doi: 10.1002/jbm.a.32676

Camarero-Espinosa S, Rothen-Rutishauser B, Weder C, Foster EJ. Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials 2016; 74: 42–52. doi: 10.1016/j.biomaterials.2015.09.033

Yeo M, Kim G. Nano/microscale topographically designed alginate/PCL scaffolds for inducing myoblast alignment and myogenic differentiation. Carbohydr Polym 2019; 223: 115041. doi: 10.1016/j.carbpol.2019.115041

Han J, Wu Q, Xia Y, Wagner MB, Xu C. Cell alignment induced by anisotropic electrospun fibrous scaffolds alone has limited effect on cardiomyocyte maturation. Stem Cell Res 2016; 16(3): 740–50. doi: 10.1016/j.scr.2016.04.014

Feric NT, Radisic M. Maturing human pluripotent stem cell-derived cardiomyocytes in human engineered cardiac tissues. Adv Drug Deliv Rev 2016; 96: 110–34. doi: 10.1016/j.addr.2015.04.019

Denning C, Borgdorff V, Crutchley J, Firth KS, George V, Kalra S, et al. Cardiomyocytes from human pluripotent stem cells: from laboratory curiosity to industrial biomedical platform. Biochim Biophys Acta 2016; 1863(7 Pt B): 1728–48. doi: 10.1016/j.bbamcr.2015.10.014

Hong T, Yang H, Zhang SS, Cho HC, Kalashnikova M, Sun B, et al. Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 2014; 20(6): 624–32. doi: 10.1038/nm.3543

Zhang D, Shadrin IY, Lam J, Xian HQ, Snodgrass HR, Bursac N. Tissue-engineered cardiac patch for advanced functional maturation of human ESC-derived cardiomyocytes. Biomaterials 2013; 34(23): 5813–20. doi: 10.1016/j.biomaterials.2013.04.026

Ziman AP, Gomez-Viquez NL, Bloch RJ, Lederer WJ. Excitation-contraction coupling changes during postnatal cardiac development. J Mol Cell Cardiol 2010; 48(2): 379–86. doi: 10.1016/j.yjmcc.2009.09.016

Ribeiro-Rodrigues TM, Martins-Marques T, Morel S, Kwak BR, Girao H. Role of connexin 43 in different forms of intercellular communication – gap junctions, extracellular vesicles and tunnelling nanotubes. J Cell Sci 2017; 130(21): 3619–30. doi: 10.1242/jcs.200667

Keung W, Boheler KR, Li RA. Developmental cues for the maturation of metabolic, electrophysiological and calcium handling properties of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther 2014; 5(1): 17. doi: 10.1186/scrt406

Chung CY, Bien H, Entcheva E. The role of cardiac tissue alignment in modulating electrical function. J Cardiovasc Electrophysiol 2007; 18(12): 1323–9. doi: 10.1111/j.1540-8167.2007.00959.x

Liu T, Zhang S, Huang C, Ma S, Bai R, Li Y, et al. Microscale grooves regulate maturation development of hPSC-CMs by the transient receptor potential channels (TRP channels). J Cell Mol Med 2021; 25(7): 3469–83. doi: 10.1111/jcmm.16429

Hopf FW, Turner PR, Steinhardt RA. Calcium misregulation and the pathogenesis of muscular dystrophy. Subcell Biochem 2007; 45: 429–64. doi: 10.1007/978-1-4020-6191-2_16

Ibrahim M, Rao C, Athanasiou T, Yacoub MH, Terracciano CM. Mechanical unloading and cell therapy have a synergistic role in the recovery and regeneration of the failing heart. Eur J Cardiothorac Surg 2012; 42(2): 312–18. doi: 10.1093/ejcts/ezs067

Yi FF, Yang L, Li YH, Su PX, Cai J, Yang XC. Electrophysiological development of transplanted embryonic stem cell-derived cardiomyocytes in the hearts of syngeneic mice. Arch Med Res 2009; 40(5): 339–44. doi: 10.1016/j.arcmed.2009.06.005

Ronaldson-Bouchard K, Ma SP, Yeager K, Chen T, Song L, Sirabella D, et al. Advanced maturation of human cardiac tissue grown from pluripotent stem cells. Nature 2018; 556(7700): 239–43. doi: 10.1038/s41586-018-0016-3

Huebsch N, Loskill P, Deveshwar N, Spencer CI, Judge LM, Mandegar MA, et al. Miniaturized iPS-cell-derived cardiac muscles for physiologically relevant drug response analyses. Sci Rep 2016; 6: 24726. doi: 10.1038/srep24726

Yang X, Rodriguez ML, Leonard A, Sun L, Fischer KA, Wang Y, et al. Fatty acids enhance the maturation of cardiomyocytes derived from human pluripotent stem cells. Stem Cell Rep 2019; 13(4): 657–68. doi: 10.1016/j.stemcr.2019.08.013

Ellen Kreipke R, Wang Y, Miklas JW, Mathieu J, Ruohola-Baker H. Metabolic remodeling in early development and cardiomyocyte maturation. Semin Cell Dev Biol 2016; 52: 84–92. doi: 10.1016/j.semcdb.2016.02.004

Published
2023-07-03
How to Cite
XuY., XiaoM., LiX., & JiangZ. (2023). Regulatory effect of anisotropic structure on cardiomyocyte maturation. STEMedicine, 4(3), e179. https://doi.org/10.37175/stemedicine.v4i3.179
Section
Review articles