MicroRNA-124-3p alleviates repetitive bleomycin-induced idiopathic pulmonary fibrosis in mouse by repressing Wnt/β-catenin signaling component AXIN1

  • Dharma Jaggi Tezpur University, Institutional Biotech Hub, Napaam, Tezpur, Assam, India
  • Kavita Aggarwal Tezpur University, Institutional Biotech Hub, Napaam, Tezpur, Assam, India
  • Lavanya Goyal Tezpur University, Institutional Biotech Hub, Napaam, Tezpur, Assam, India
Keywords: idiopathic pulmonary fibrosis, Wnt/β-catenin signaling, bleomycin, microRNA, C57BL/6 mouse

Abstract

Background: MicroRNA (miR)-124-3p is a crucial player in the transforming growth factor β1-induced in vitro fibrogenic differentiation of mesenchymal stem cells. In the current study, we aimed to further verify the in vivo role of miR-124-3p in a mouse model of idiopathic pulmonary fibrosis (IPF).

Methods: Mouse IPF model was established using repetitive intratracheal bleomycin (BLM) dosing, followed by in vivo delivery of miR-124-3p. Masson’s trichrome staining, hematoxylin-eosin (H&E), and modified Ashcroft score were performed on lung tissues to assess extent of pulmonary fibrosis. Collagen deposition was examined using hydroxyproline assay. Inflammatory cell counts were evaluated in the bronchoalveolar lavage (BAL) fluid. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay was performed to assess apoptosis in lung tissues.

Results: Repetitive BLM injection induced elevated fibrosis score and collagen deposition, elevated numbers of inflammatory cells in the BAL fluid, and promoted in lung tissues of mice. MiR-124-3p, to a considerable extent, reversed the BLM-induced IPF symptoms in terms of fibrosis score and collagen deposition in the lung tissues, reduced the BLM-elevated inflammatory cells in the BAL fluid and the percentage of BLM-induced apoptotic cells in lung tissues. AXIN1, a pivotal component in Wnt signaling, was also significantly inhibited by miR-124-3p in the experimental mice.

Conclusion: MiR-124-3p serves as a therapeutic target in the mouse model of IPF by repressing Wnt/β-catenin signaling component AXIN1 and holds great clinical potential in molecular therapies to treat human IPF patients.

Downloads

Download data is not yet available.

References

Caminati A, Cassandro R, Torre O, Harari S. Severe idiopathic pulmonary fibrosis: what can be done? Eur Respir Rev 2017; 26(145): 170047. doi: 10.1183/16000617.0047-2017

Kolb M, Bonella F, Wollin L. Therapeutic targets in idiopathic pulmonary fibrosis. Respir Med 2017; 131: 49–57. doi: 10.1016/j.rmed.2017.07.062

Selman M, King TE, Pardo A. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann Intern Med 2001; 134(2): 136–51. doi: 10.7326/0003-4819-134-2-200101160-00015

Selman M, Pardo A, Barrera L, Estrada A, Watson SR, Wilson K, et al. Gene expression profiles distinguish idiopathic pulmonary fibrosis from hypersensitivity pneumonitis. Am J Respir Crit Care Med 2006; 173(2): 188–98. doi: 10.1164/rccm.200504-644OC

Thannickal VJ, Toews GB, White ES, Lynch Iii JP, Martinez FJ. Mechanisms of pulmonary fibrosis. Annu Rev Med 2004; 55: 395–417. doi: 10.1146/annurev.med.55.091902.103810

Tzouvelekis A, Koliakos G, Ntolios P, Baira I, Bouros E, Oikonomou A, et al. Stem cell therapy for idiopathic pulmonary fibrosis: a protocol proposal. J Transl Med 2011; 9(1): 182. doi: 10.1186/1479-5876-9-182

Chow K, Fessel JP, Kaoriihida-Stansbury, Schmidt EP, Gaskill C, Alvarez D, et al. Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling. Pulm Circ 2013; 3(1): 31–49. doi: 10.4103/2045-8932.109912

Gong X, Sun Z, Cui D, Xu X, Zhu H, Wang L, et al. Isolation and characterization of lung resident mesenchymal stem cells capable of differentiating into alveolar epithelial type II cells. Cell Biol Int 2014; 38(4): 405–11. doi: 10.1002/cbin.10240

Jones E, McGonagle D. Human bone marrow mesenchymal stem cells in vivo. Rheumatology 2007; 47(2): 126–31. doi: 10.1093/rheumatology/kem206

Königshoff M, Balsara N, Pfaff E-M, Kramer M, Chrobak I, Seeger W, et al. Functional Wnt signaling is increased in idiopathic pulmonary fibrosis. PLoS One 2008; 3(5): e2142. doi: 10.1371/journal.pone.0002142

Uematsu K, He B, You L, Xu Z, McCormick F, Jablons DM. Activation of the Wnt pathway in non small cell lung cancer: evidence of dishevelled overexpression. Oncogene 2003; 22(46): 7218. doi: 10.1038/sj.onc.1206817

Lu Y, Zhang T, Shan S, Wang S, Bian W, Ren T, et al. MiR-124 regulates transforming growth factor-beta1 induced differentiation of lung resident mesenchymal stem cells to myofibroblast by repressing Wnt/beta-catenin signaling. Dev Biol 2019; 449(2): 115–21. doi: 10.1016/j.ydbio.2019.02.010

Degryse AL, Tanjore H, Xu XC, Polosukhin VV, Jones BR, McMahon FB, et al. Repetitive intratracheal bleomycin models several features of idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2010; 299(4): L442–52. doi: 10.1152/ajplung.00026.2010

Hubner RH, Gitter W, El Mokhtari NE, Mathiak M, Both M, Bolte H, et al. Standardized quantification of pulmonary fibrosis in histological samples. BioTechniques 2008; 44(4): 507–11, 14–7. doi: 10.2144/000112729

Stefanov AN, Fox J, Depault F, Haston CK. Positional cloning reveals strain-dependent expression of Trim16 to alter susceptibility to bleomycin-induced pulmonary fibrosis in mice. PLoS Genet 2013; 9(1): e1003203. doi: 10.1371/journal.pgen.1003203

Hoyt DG, Lazo JS. Alterations in pulmonary mRNA encoding procollagens, fibronectin and transforming growth factor-beta precede bleomycin-induced pulmonary fibrosis in mice. J Pharmacol Exp Ther 1988; 246(2): 765–71.

Peng R, Sridhar S, Tyagi G, Phillips JE, Garrido R, Harris P, et al. Bleomycin induces molecular changes directly relevant to idiopathic pulmonary fibrosis: a model for ‘active’ disease. PLoS One 2013; 8(4): e59348. doi: 10.1371/journal.pone.0059348

Izbicki G, Segel MJ, Christensen TG, Conner MW, Breuer R. Time course of bleomycin-induced lung fibrosis. Int J Exp Pathol 2002; 83(3): 111–9. doi: 10.1046/j.1365-2613.2002.00220.x

Aguilar S, Scotton CJ, McNulty K, Nye E, Stamp G, Laurent G, et al. Bone marrow stem cells expressing keratinocyte growth factor via an inducible lentivirus protects against bleomycin-induced pulmonary fibrosis. PLoS One 2009; 4(11): e8013. doi: 10.1371/journal.pone.0008013

Ortiz LA, Gambelli F, McBride C, Gaupp D, Baddoo M, Kaminski N, et al. Mesenchymal stem cell engraftment in lung is enhanced in response to bleomycin exposure and ameliorates its fibrotic effects. Proc Natl Acad Sci U S A 2003; 100(14): 8407–11. doi: 10.1073/pnas.1432929100

Rojas M, Xu J, Woods CR, Mora AL, Spears W, Roman J, et al. Bone marrow-derived mesenchymal stem cells in repair of the injured lung. Am J Respir Cell Mol Biol 2005; 33(2): 145–52. doi: 10.1165/rcmb.2004-0330OC

Ortiz LA, Dutreil M, Fattman C, Pandey AC, Torres G, Go K, et al. Interleukin 1 receptor antagonist mediates the antiinflammatory and antifibrotic effect of mesenchymal stem cells during lung injury. Proc Natl Acad Sci U S A 2007; 104(26): 11002–7. doi: 10.1073/pnas.0704421104

Foskett AM, Bazhanov N, Ti X, Tiblow A, Bartosh TJ, Prockop DJ. Phase-directed therapy: TSG-6 targeted to early inflammation improves bleomycin-injured lungs. Am J Physiol Lung Cell Mol Physiol 2014; 306(2): L120–31. doi: 10.1152/ajplung.00240.2013

Lee SH, Lee EJ, Lee SY, Kim JH, Shim JJ, Shin C, et al. The effect of adipose stem cell therapy on pulmonary fibrosis induced by repetitive intratracheal bleomycin in mice. Exp Lung Res 2014; 40(3): 117–25. doi: 10.3109/01902148.2014.881930

Moodley Y, Vaghjiani V, Chan J, Baltic S, Ryan M, Tchongue J, et al. Anti-inflammatory effects of adult stem cells in sustained lung injury: a comparative study. PLoS One 2013; 8(8): e69299. doi: 10.1371/journal.pone.0069299

Srour N, Thebaud B. Mesenchymal stromal cells in animal bleomycin pulmonary fibrosis models: a systematic review. Stem Cells Transl Med 2015; 4(12): 1500–10. doi: 10.5966/sctm.2015-0121

Cross J, Stenton GR, Harwig C, Szabo C, Genovese T, Di Paola R, et al. AQX-1125, small molecule SHIP1 activator inhibits bleomycin-induced pulmonary fibrosis. Br J Pharmacol 2017; 174(18): 3045–57. doi: 10.1111/bph.13934

Tanaka KI, Niino T, Ishihara T, Takafuji A, Takayama T, Kanda Y, et al. Protective and therapeutic effect of felodipine against bleomycin-induced pulmonary fibrosis in mice. Sci Rep 2017; 7(1): 3439. doi: 10.1038/s41598-017-03676-y

Pandit KV, Milosevic J. MicroRNA regulatory networks in idiopathic pulmonary fibrosis. Biochem Cell Biol 2015; 93(2): 129–37. doi: 10.1139/bcb-2014-0101

Kang H. Role of MicroRNAs in TGF-beta signaling pathway-mediated pulmonary fibrosis. Int J Mol Sci 2017; 18(12): 2527. doi: 10.3390/ijms18122527

Chilosi M, Poletti V, Zamò A, Lestani M, Montagna L, Piccoli P, et al. Aberrant Wnt/β-catenin pathway activation in idiopathic pulmonary fibrosis. Am J Pathol 2003; 162(5): 1495–502. doi: 10.1016/S0002-9440(10)64282-4

Königshoff M, Kramer M, Balsara N, Wilhelm J, Amarie OV, Jahn A, et al. WNT1-inducible signaling protein–1 mediates pulmonary fibrosis in mice and is upregulated in humans with idiopathic pulmonary fibrosis. J Clin Investig 2009; 119(4): 772–87. doi: 10.1172/JCI33950

Wang Y, Sun Z, Qiu X, Li Y, Qin J, Han X. Roles of Wnt/β-catenin signaling in epithelial differentiation of mesenchymal stem cells. Biochem Biophys Res Commun 2009; 390(4): 1309–14. doi: 10.1016/j.bbrc.2009.10.143

Published
2023-10-04
How to Cite
JaggiD., AggarwalK., & GoyalL. (2023). MicroRNA-124-3p alleviates repetitive bleomycin-induced idiopathic pulmonary fibrosis in mouse by repressing Wnt/β-catenin signaling component AXIN1. STEMedicine, 4(4), e185. https://doi.org/10.37175/stemedicine.v4i4.185
Section
Research articles